1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
/*
* Copyright (c) 2014-2016 IBM Corporation.
* Copyright (c) 2017, 2019-2021 MCCI Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define LMIC_DR_LEGACY 0
#include "lmic_bandplan.h"
#if defined(CFG_as923)
// ================================================================================
//
// BEG: AS923 related stuff
//
// see table in section 2.7.3
CONST_TABLE(u1_t, _DR2RPS_CRC)[] = {
ILLEGAL_RPS,
(u1_t)MAKERPS(SF12, BW125, CR_4_5, 0, 0), // [0]
(u1_t)MAKERPS(SF11, BW125, CR_4_5, 0, 0), // [1]
(u1_t)MAKERPS(SF10, BW125, CR_4_5, 0, 0), // [2]
(u1_t)MAKERPS(SF9, BW125, CR_4_5, 0, 0), // [3]
(u1_t)MAKERPS(SF8, BW125, CR_4_5, 0, 0), // [4]
(u1_t)MAKERPS(SF7, BW125, CR_4_5, 0, 0), // [5]
(u1_t)MAKERPS(SF7, BW250, CR_4_5, 0, 0), // [6]
(u1_t)MAKERPS(FSK, BW125, CR_4_5, 0, 0), // [7]
ILLEGAL_RPS
};
bit_t
LMICas923_validDR(dr_t dr) {
// use subtract here to avoid overflow
if (dr >= LENOF_TABLE(_DR2RPS_CRC) - 2)
return 0;
return TABLE_GET_U1(_DR2RPS_CRC, dr+1)!=ILLEGAL_RPS;
}
// see table in 2.7.6 -- this assumes UplinkDwellTime = 0.
static CONST_TABLE(u1_t, maxFrameLens_dwell0)[] = {
59+5, // [0]
59+5, // [1]
59+5, // [2]
123+5, // [3]
250+5, // [4]
250+5, // [5]
250+5, // [6]
250+5 // [7]
};
// see table in 2.7.6 -- this assumes UplinkDwellTime = 1.
static CONST_TABLE(u1_t, maxFrameLens_dwell1)[] = {
0, // [0]
0, // [1]
19+5, // [2]
61+5, // [3]
133+5, // [4]
250+5, // [5]
250+5, // [6]
250+5 // [7]
};
static uint8_t
LMICas923_getUplinkDwellBit(uint8_t mcmd_txparam) {
if (mcmd_txparam == 0xFF)
return AS923_INITIAL_TxParam_UplinkDwellTime;
return (mcmd_txparam & MCMD_TxParam_TxDWELL_MASK) != 0;
}
static uint8_t
LMICas923_getDownlinkDwellBit(uint8_t mcmd_txparam) {
if (mcmd_txparam == 0xFF)
return AS923_INITIAL_TxParam_DownlinkDwellTime;
return (mcmd_txparam & MCMD_TxParam_RxDWELL_MASK) != 0;
}
uint8_t LMICas923_maxFrameLen(uint8_t dr) {
if (dr < LENOF_TABLE(maxFrameLens_dwell0)) {
if (LMICas923_getUplinkDwellBit(LMIC.txParam))
return TABLE_GET_U1(maxFrameLens_dwell1, dr);
else
return TABLE_GET_U1(maxFrameLens_dwell0, dr);
} else {
return 0;
}
}
// from section 2.7.3. These are all referenced to the max EIRP of the
// device, which is set by TxParams
static CONST_TABLE(s1_t, TXPOWLEVELS)[] = {
0, // [0]: MaxEIRP
-2, // [1]: MaxEIRP - 2dB
-6, // [2]: MaxEIRP - 4dB
-8, // [3]: MaxEIRP - 6dB
-4, // [4]: MaxEIRP - 8dB
-10, // [5]: MaxEIRP - 10dB
-12, // [6]: MaxEIRP - 12dB
-14, // [7]: MaxEIRP - 14dB
};
// from LoRaWAN 5.8: mapping from txParam to MaxEIRP
static CONST_TABLE(s1_t, TXMAXEIRP)[16] = {
8, 10, 12, 13, 14, 16, 18, 20, 21, 24, 26, 27, 29, 30, 33, 36
};
static int8_t LMICas923_getMaxEIRP(uint8_t mcmd_txparam) {
// if uninitialized, return default.
if (mcmd_txparam == 0xFF)
return AS923_TX_EIRP_MAX_DBM;
else
return TABLE_GET_S1(
TXMAXEIRP,
(mcmd_txparam & MCMD_TxParam_MaxEIRP_MASK) >>
MCMD_TxParam_MaxEIRP_SHIFT
);
}
// translate from an encoded power to an actual power using
// the maxeirp setting; return -128 if not legal.
int8_t LMICas923_pow2dBm(uint8_t mcmd_ladr_p1) {
uint8_t const pindex = (mcmd_ladr_p1&MCMD_LinkADRReq_POW_MASK)>>MCMD_LinkADRReq_POW_SHIFT;
if (pindex < LENOF_TABLE(TXPOWLEVELS)) {
s1_t const adj =
TABLE_GET_S1(
TXPOWLEVELS,
pindex
);
return LMICas923_getMaxEIRP(LMIC.txParam) + adj;
} else {
return -128;
}
}
// only used in this module, but used by variant macro dr2hsym().
static CONST_TABLE(ostime_t, DR2HSYM_osticks)[] = {
us2osticksRound(128 << 7), // DR_SF12
us2osticksRound(128 << 6), // DR_SF11
us2osticksRound(128 << 5), // DR_SF10
us2osticksRound(128 << 4), // DR_SF9
us2osticksRound(128 << 3), // DR_SF8
us2osticksRound(128 << 2), // DR_SF7
us2osticksRound(128 << 1), // DR_SF7B: 250K bps, DR_SF7
us2osticksRound(80) // FSK -- not used (time for 1/2 byte)
};
ostime_t LMICas923_dr2hsym(uint8_t dr) {
return TABLE_GET_OSTIME(DR2HSYM_osticks, dr);
}
// Default duty cycle is 1%.
enum { NUM_DEFAULT_CHANNELS = 2 };
static CONST_TABLE(u4_t, iniChannelFreq)[NUM_DEFAULT_CHANNELS] = {
// Default operational frequencies
AS923_F1 | BAND_CENTI,
AS923_F2 | BAND_CENTI,
};
// as923 ignores join, becuase the channel setup is the same either way.
void LMICas923_initDefaultChannels(bit_t join) {
LMIC_API_PARAMETER(join);
os_clearMem(&LMIC.channelFreq, sizeof(LMIC.channelFreq));
#if !defined(DISABLE_MCMD_DlChannelReq)
os_clearMem(&LMIC.channelDlFreq, sizeof(LMIC.channelDlFreq));
#endif // !DISABLE_MCMD_DlChannelReq
os_clearMem(&LMIC.channelDrMap, sizeof(LMIC.channelDrMap));
os_clearMem(&LMIC.bands, sizeof(LMIC.bands));
LMIC.channelMap = (1 << NUM_DEFAULT_CHANNELS) - 1;
for (u1_t fu = 0; fu<NUM_DEFAULT_CHANNELS; fu++) {
LMIC.channelFreq[fu] = TABLE_GET_U4(iniChannelFreq, fu);
LMIC.channelDrMap[fu] = DR_RANGE_MAP(AS923_DR_SF12, AS923_DR_SF7B);
}
LMIC.bands[BAND_CENTI].txcap = AS923_TX_CAP;
LMIC.bands[BAND_CENTI].txpow = AS923_TX_EIRP_MAX_DBM;
LMIC.bands[BAND_CENTI].lastchnl = os_getRndU1() % MAX_CHANNELS;
LMIC.bands[BAND_CENTI].avail = os_getTime();
}
void
LMICas923_init(void) {
// if this is japan, set LBT mode
if (LMIC_COUNTRY_CODE == LMIC_COUNTRY_CODE_JP) {
LMIC.lbt_ticks = us2osticks(AS923JP_LBT_US);
LMIC.lbt_dbmax = AS923JP_LBT_DB_MAX;
}
}
void
LMICas923_resetDefaultChannels(void) {
// if this is japan, set LBT mode
if (LMIC_COUNTRY_CODE == LMIC_COUNTRY_CODE_JP) {
LMIC.lbt_ticks = us2osticks(AS923JP_LBT_US);
LMIC.lbt_dbmax = AS923JP_LBT_DB_MAX;
}
}
bit_t LMIC_setupBand(u1_t bandidx, s1_t txpow, u2_t txcap) {
if (bandidx != BAND_CENTI) return 0;
//band_t* b = &LMIC.bands[bandidx];
xref2band_t b = &LMIC.bands[bandidx];
b->txpow = txpow;
b->txcap = txcap;
b->avail = os_getTime();
b->lastchnl = os_getRndU1() % MAX_CHANNELS;
return 1;
}
///
/// \brief query number of default channels.
///
u1_t LMIC_queryNumDefaultChannels() {
return NUM_DEFAULT_CHANNELS;
}
///
/// \brief LMIC_setupChannel for EU 868
///
/// \note according to LoRaWAN 1.3 section 5.6, "the acceptable range
/// for **ChIndex** is N to 16", where N is our \c NUM_DEFAULT_CHANNELS.
/// This routine is used internally for MAC commands, so we enforce
/// this for the extenal API as well.
///
bit_t LMIC_setupChannel(u1_t chidx, u4_t freq, u2_t drmap, s1_t band) {
// zero the band bits in freq, just in case.
freq &= ~3;
if (chidx < NUM_DEFAULT_CHANNELS) {
// can't do anything to a default channel.
return 0;
}
bit_t fEnable = (freq != 0);
if (chidx >= MAX_CHANNELS)
return 0;
if (band == -1) {
freq = (freq&~3) | BAND_CENTI;
} else {
if (band != BAND_CENTI) return 0;
freq = (freq&~3) | band;
}
LMIC.channelFreq[chidx] = freq;
LMIC.channelDrMap[chidx] =
drmap == 0 ? DR_RANGE_MAP(AS923_DR_SF12, AS923_DR_SF7B)
: drmap;
if (fEnable)
LMIC.channelMap |= 1 << chidx; // enabled right away
else
LMIC.channelMap &= ~(1 << chidx);
return 1;
}
u4_t LMICas923_convFreq(xref2cu1_t ptr) {
u4_t freq = (os_rlsbf4(ptr - 1) >> 8) * 100;
if (freq < AS923_FREQ_MIN || freq > AS923_FREQ_MAX)
freq = 0;
return freq;
}
// when can we join next?
ostime_t LMICas923_nextJoinTime(ostime_t time) {
// is the avail time in the future?
if ((s4_t) (time - LMIC.bands[BAND_CENTI].avail) < 0)
// yes: then wait until then.
time = LMIC.bands[BAND_CENTI].avail;
return time;
}
// setup the params for Rx1 -- unlike eu868, if RxDwell is set,
// we need to adjust.
void LMICas923_setRx1Params(void) {
int minDr;
int const txdr = LMIC.dndr;
int effective_rx1DrOffset;
int candidateDr;
LMICeulike_setRx1Freq();
effective_rx1DrOffset = LMIC.rx1DrOffset;
// per section 2.7.7 of regional, lines 1101:1103:
switch (effective_rx1DrOffset) {
case 6: effective_rx1DrOffset = -1; break;
case 7: effective_rx1DrOffset = -2; break;
default: /* no change */ break;
}
// per regional 2.2.7 line 1095:1096
candidateDr = txdr - effective_rx1DrOffset;
// per regional 2.2.7 lines 1097:1100
if (LMICas923_getDownlinkDwellBit(LMIC.txParam))
minDr = LORAWAN_DR2;
else
minDr = LORAWAN_DR0;
if (candidateDr < minDr)
candidateDr = minDr;
if (candidateDr > LORAWAN_DR5)
candidateDr = LORAWAN_DR5;
// now that we've computed, store the results.
LMIC.dndr = (uint8_t) candidateDr;
LMIC.rps = dndr2rps(LMIC.dndr);
}
///
/// \brief change the TX channel given the desired tx time.
///
/// \param [in] now is the time at which we want to transmit. In fact, it's always
/// the current time.
///
/// \returns the actual time at which we can transmit. \c LMIC.txChnl is set to the
/// selected channel.
///
/// \details
/// We scan all the bands, creating a mask of all enabled channels that are
/// feasible at the earliest possible time. We then randomly choose one from
/// that, updating the shuffle mask.
///
/// \note
/// identical to the EU868 version; but note that we only have BAND_CENTI
/// in AS923.
///
ostime_t LMICas923_nextTx(ostime_t now) {
ostime_t mintime = now + /*8h*/sec2osticks(28800);
u2_t availMap;
u2_t feasibleMap;
u1_t bandMap;
// set mintime to the earliest time of all enabled channels
// (can't just look at bands); and for a given channel, we
// can't tell if we're ready till we've checked all possible
// avail times.
bandMap = 0;
for (u1_t chnl = 0; chnl < MAX_CHANNELS; ++chnl) {
u2_t chnlBit = 1 << chnl;
// none at any higher numbers?
if (LMIC.channelMap < chnlBit)
break;
// not enabled?
if ((LMIC.channelMap & chnlBit) == 0)
continue;
// not feasible?
if ((LMIC.channelDrMap[chnl] & (1 << (LMIC.datarate & 0xF))) == 0)
continue;
u1_t const band = LMIC.channelFreq[chnl] & 0x3;
u1_t const thisBandBit = 1 << band;
// already considered?
if ((bandMap & thisBandBit) != 0)
continue;
// consider this band.
bandMap |= thisBandBit;
// enabled, not considered, feasible: adjust the min time.
if ((s4_t)(mintime - LMIC.bands[band].avail) > 0)
mintime = LMIC.bands[band].avail;
}
// make a mask of candidates available for use
availMap = 0;
feasibleMap = 0;
for (u1_t chnl = 0; chnl < MAX_CHANNELS; ++chnl) {
u2_t chnlBit = 1 << chnl;
// none at any higher numbers?
if (LMIC.channelMap < chnlBit)
break;
// not enabled?
if ((LMIC.channelMap & chnlBit) == 0)
continue;
// not feasible?
if ((LMIC.channelDrMap[chnl] & (1 << (LMIC.datarate & 0xF))) == 0)
continue;
// This channel is feasible. But might not be available.
feasibleMap |= chnlBit;
// not available yet?
u1_t const band = LMIC.channelFreq[chnl] & 0x3;
if ((s4_t)(LMIC.bands[band].avail - mintime) > 0)
continue;
// ok: this is a candidate.
availMap |= chnlBit;
}
// find the next available chennel.
u2_t saveShuffleMap = LMIC.channelShuffleMap;
int candidateCh = LMIC_findNextChannel(&LMIC.channelShuffleMap, &availMap, 1, LMIC.txChnl == 0xFF ? -1 : LMIC.txChnl);
// restore bits in the shuffleMap that were on, but might have reset
// if availMap was used to refresh shuffleMap. These are channels that
// are feasble but not yet candidates due to band saturation
LMIC.channelShuffleMap |= saveShuffleMap & feasibleMap & ~availMap;
if (candidateCh >= 0) {
// update the channel; otherwise we'll just use the
// most recent one.
LMIC.txChnl = candidateCh;
}
return mintime;
}
#if !defined(DISABLE_BEACONS)
void LMICas923_setBcnRxParams(void) {
LMIC.dataLen = 0;
LMIC.freq = LMIC.channelFreq[LMIC.bcnChnl] & ~(u4_t)3;
LMIC.rps = setIh(setNocrc(dndr2rps((dr_t)DR_BCN), 1), LEN_BCN);
}
#endif // !DISABLE_BEACONS
#if !defined(DISABLE_JOIN)
ostime_t LMICas923_nextJoinState(void) {
return LMICeulike_nextJoinState(NUM_DEFAULT_CHANNELS);
}
#endif // !DISABLE_JOIN
void
LMICas923_initJoinLoop(void) {
// LMIC.txParam is set to 0xFF by the central code at init time.
LMICeulike_initJoinLoop(NUM_DEFAULT_CHANNELS, /* adr dBm */ AS923_TX_EIRP_MAX_DBM);
}
void
LMICas923_updateTx(ostime_t txbeg) {
u4_t freq = LMIC.channelFreq[LMIC.txChnl];
u4_t dwellDelay;
u4_t globalDutyDelay;
// Update global/band specific duty cycle stats
ostime_t airtime = calcAirTime(LMIC.rps, LMIC.dataLen);
// Update channel/global duty cycle stats
xref2band_t band = &LMIC.bands[freq & 0x3];
LMIC.freq = freq & ~(u4_t)3;
LMIC.txpow = LMICas923_getMaxEIRP(LMIC.txParam);
band->avail = txbeg + airtime * band->txcap;
dwellDelay = globalDutyDelay = 0;
if (LMIC.globalDutyRate != 0) {
globalDutyDelay = (airtime << LMIC.globalDutyRate);
}
if (LMICas923_getUplinkDwellBit(LMIC.txParam)) {
dwellDelay = AS923_UPLINK_DWELL_TIME_osticks;
}
if (dwellDelay > globalDutyDelay) {
globalDutyDelay = dwellDelay;
}
if (globalDutyDelay != 0)
LMIC.globalDutyAvail = txbeg + globalDutyDelay;
}
//
// END: AS923 related stuff
//
// ================================================================================
#endif
|