1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
|
/*******************************************************************************
* Copyright (c) 2006 International Business Machines Corporation. *
* All rights reserved. This program and the accompanying materials *
* are made available under the terms of the Common Public License v1.0 *
* which accompanies this distribution, and is available at *
* http://www.opensource.org/licenses/cpl1.0.php *
* *
* Contributors: *
* Douglas M. Pase - initial API and implementation *
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stddef.h>
#include <vector>
#if defined(NUMA)
#include <numa.h>
#endif
#include "Run.h"
#include <AsmJit/AsmJit.h>
#include "Chain.h"
#include "Timer.h"
#include "SpinBarrier.h"
static double max(double v1, double v2);
static double min(double v1, double v2);
typedef void (*benchmark)(const Chain**);
typedef benchmark (*generator)(int64 chains_per_thread,
int64 bytes_per_line, int64 bytes_per_chain,
int64 stride, int64 busy_cycles, bool prefetch);
static benchmark chase_pointers(int64 chains_per_thread,
int64 bytes_per_line, int64 bytes_per_chain,
int64 stride, int64 busy_cycles, bool prefetch);
static benchmark follow_streams(int64 chains_per_thread,
int64 bytes_per_line, int64 bytes_per_chain,
int64 stride, int64 busy_cycles, bool prefetch);
Lock Run::global_mutex;
int64 Run::_ops_per_chain = 0;
double Run::_seconds = 1E9;
Run::Run() :
exp(NULL), bp(NULL) {
}
Run::~Run() {
}
void Run::set(Experiment &e, SpinBarrier* sbp) {
this->exp = &e;
this->bp = sbp;
}
int Run::run() {
// first allocate all memory for the chains,
// making sure it is allocated within the
// intended numa domains
Chain** chain_memory = new Chain*[this->exp->chains_per_thread];
Chain** root = new Chain*[this->exp->chains_per_thread];
#if defined(NUMA)
// establish the node id where this thread
// will run. threads are mapped to nodes
// by the set-up code for Experiment.
int run_node_id = this->exp->thread_domain[this->thread_id()];
numa_run_on_node(run_node_id);
// establish the node id where this thread's
// memory will be allocated.
for (int i=0; i < this->exp->chains_per_thread; i++) {
int alloc_node_id = this->exp->chain_domain[this->thread_id()][i];
nodemask_t alloc_mask;
nodemask_zero(&alloc_mask);
nodemask_set(&alloc_mask, alloc_node_id);
numa_set_membind(&alloc_mask);
chain_memory[i] = new Chain[ this->exp->links_per_chain ];
}
#else
for (int i = 0; i < this->exp->chains_per_thread; i++) {
chain_memory[i] = new Chain[this->exp->links_per_chain];
}
#endif
// initialize the chains and
// compile the function that
// will execute the tests
generator gen;
for (int i = 0; i < this->exp->chains_per_thread; i++) {
if (this->exp->access_pattern == Experiment::RANDOM) {
root[i] = random_mem_init(chain_memory[i]);
gen = chase_pointers;
} else if (this->exp->access_pattern == Experiment::STRIDED) {
if (0 < this->exp->stride) {
root[i] = forward_mem_init(chain_memory[i]);
} else {
root[i] = reverse_mem_init(chain_memory[i]);
}
gen = chase_pointers;
} else if (this->exp->access_pattern == Experiment::STREAM) {
root[i] = stream_mem_init(chain_memory[i]);
gen = follow_streams;
}
}
if (this->exp->iterations <= 0) {
// compile benchmark
benchmark bench = gen(this->exp->chains_per_thread,
this->exp->bytes_per_line, this->exp->bytes_per_chain,
this->exp->stride, this->exp->busy_cycles,
this->exp->prefetch);
volatile static double istart = 0;
volatile static double istop = 0;
volatile static double elapsed = 0;
volatile static int64 iters = 1;
volatile double bound = max(0.2, 10 * Timer::resolution());
for (iters = 1; elapsed <= bound; iters = iters << 1) {
// barrier
this->bp->barrier();
// start timer
if (this->thread_id() == 0) {
istart = Timer::seconds();
}
this->bp->barrier();
// chase pointers
for (int i = 0; i < iters; i++)
bench((const Chain**) root);
// barrier
this->bp->barrier();
// stop timer
if (this->thread_id() == 0) {
istop = Timer::seconds();
elapsed = istop - istart;
}
this->bp->barrier();
}
// calculate the number of iterations
if (this->thread_id() == 0) {
if (0 < this->exp->seconds) {
this->exp->iterations = max(1,
0.9999 + 0.5 * this->exp->seconds * iters / elapsed);
} else {
this->exp->iterations = max(1, 0.9999 + iters / elapsed);
}
}
this->bp->barrier();
}
#if defined(UNDEFINED)
#endif
// compile benchmark
benchmark bench = gen(this->exp->chains_per_thread,
this->exp->bytes_per_line, this->exp->bytes_per_chain,
this->exp->stride, this->exp->busy_cycles,
this->exp->prefetch);
for (int e = 0; e < this->exp->experiments; e++) {
// barrier
this->bp->barrier();
// start timer
double start = 0;
if (this->thread_id() == 0)
start = Timer::seconds();
this->bp->barrier();
// chase pointers
for (int i = 0; i < this->exp->iterations; i++)
bench((const Chain**) root);
// barrier
this->bp->barrier();
// stop timer
double stop = 0;
if (this->thread_id() == 0)
stop = Timer::seconds();
this->bp->barrier();
if (0 <= e) {
if (this->thread_id() == 0) {
double delta = stop - start;
if (0 < delta) {
Run::_seconds = min(Run::_seconds, delta);
}
}
}
}
this->bp->barrier();
for (int i = 0; i < this->exp->chains_per_thread; i++) {
if (chain_memory[i] != NULL
) delete[] chain_memory[i];
}
if (chain_memory != NULL
) delete[] chain_memory;
return 0;
}
int dummy = 0;
void Run::mem_check(Chain *m) {
if (m == NULL
) dummy += 1;
}
static double max(double v1, double v2) {
if (v1 < v2)
return v2;
return v1;
}
static double min(double v1, double v2) {
if (v2 < v1)
return v2;
return v1;
}
// exclude 2 and Mersenne primes, i.e.,
// primes of the form 2**n - 1, e.g.,
// 3, 7, 31, 127
static const int prime_table[] = { 5, 11, 13, 17, 19, 23, 37, 41, 43, 47, 53,
61, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 131, 137, 139, 149, 151,
157, 163, };
static const int prime_table_size = sizeof prime_table / sizeof prime_table[0];
Chain*
Run::random_mem_init(Chain *mem) {
// initialize pointers --
// choose a page at random, then use
// one pointer from each cache line
// within the page. all pages and
// cache lines are chosen at random.
Chain* root = 0;
Chain* prev = 0;
int link_within_line = 0;
int64 local_ops_per_chain = 0;
// we must set a lock because random()
// is not thread safe
Run::global_mutex.lock();
setstate(this->exp->random_state[this->thread_id()]);
int page_factor = prime_table[random() % prime_table_size];
int page_offset = random() % this->exp->pages_per_chain;
Run::global_mutex.unlock();
// loop through the pages
for (int i = 0; i < this->exp->pages_per_chain; i++) {
int page = (page_factor * i + page_offset) % this->exp->pages_per_chain;
Run::global_mutex.lock();
setstate(this->exp->random_state[this->thread_id()]);
int line_factor = prime_table[random() % prime_table_size];
int line_offset = random() % this->exp->lines_per_page;
Run::global_mutex.unlock();
// loop through the lines within a page
for (int j = 0; j < this->exp->lines_per_page; j++) {
int line_within_page = (line_factor * j + line_offset)
% this->exp->lines_per_page;
int link = page * this->exp->links_per_page
+ line_within_page * this->exp->links_per_line
+ link_within_line;
if (root == 0) {
// printf("root = %d(%d)[0x%x].\n", page, line_within_page, mem+link);
prev = root = mem + link;
local_ops_per_chain += 1;
} else {
// printf("0x%x = %d(%d)[0x%x].\n", prev, page, line_within_page, mem+link);
prev->next = mem + link;
prev = prev->next;
local_ops_per_chain += 1;
}
}
}
prev->next = root;
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
return root;
}
Chain*
Run::forward_mem_init(Chain *mem) {
Chain* root = 0;
Chain* prev = 0;
int link_within_line = 0;
int64 local_ops_per_chain = 0;
for (int i = 0; i < this->exp->lines_per_chain; i += this->exp->stride) {
int link = i * this->exp->links_per_line + link_within_line;
if (root == NULL) {
// printf("root = %d(%d)[0x%x].\n", page, line_within_page, mem+link);
prev = root = mem + link;
local_ops_per_chain += 1;
} else {
// printf("0x%x = %d(%d)[0x%x].\n", prev, page, line_within_page, mem+link);
prev->next = mem + link;
prev = prev->next;
local_ops_per_chain += 1;
}
}
prev->next = root;
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
return root;
}
Chain*
Run::reverse_mem_init(Chain *mem) {
Chain* root = 0;
Chain* prev = 0;
int link_within_line = 0;
int64 local_ops_per_chain = 0;
int stride = -this->exp->stride;
int last;
for (int i = 0; i < this->exp->lines_per_chain; i += stride) {
last = i;
}
for (int i = last; 0 <= i; i -= stride) {
int link = i * this->exp->links_per_line + link_within_line;
if (root == 0) {
// printf("root = %d(%d)[0x%x].\n", page, line_within_page, mem+link);
prev = root = mem + link;
local_ops_per_chain += 1;
} else {
// printf("0x%x = %d(%d)[0x%x].\n", prev, page, line_within_page, mem+link);
prev->next = mem + link;
prev = prev->next;
local_ops_per_chain += 1;
}
}
prev->next = root;
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
return root;
}
static benchmark chase_pointers(int64 chains_per_thread, // memory loading per thread
int64 bytes_per_line, // ignored
int64 bytes_per_chain, // ignored
int64 stride, // ignored
int64 busy_cycles, // processing cycles
bool prefetch // prefetch?
) {
// Create Compiler.
AsmJit::Compiler c;
// Tell compiler the function prototype we want. It allocates variables representing
// function arguments that can be accessed through Compiler or Function instance.
c.newFunction(AsmJit::CALL_CONV_DEFAULT, AsmJit::FunctionBuilder1<AsmJit::Void, const Chain**>());
// Try to generate function without prolog/epilog code:
c.getFunction()->setHint(AsmJit::FUNCTION_HINT_NAKED, true);
// Create labels.
AsmJit::Label L_Loop = c.newLabel();
// Function arguments.
AsmJit::GPVar chain(c.argGP(0));
// Save the head
std::vector<AsmJit::GPVar> heads(chains_per_thread);
for (int i = 0; i < chains_per_thread; i++) {
AsmJit::GPVar head = c.newGP();
c.mov(head, ptr(chain));
heads[i] = head;
}
// Current position
std::vector<AsmJit::GPVar> positions(chains_per_thread);
for (int i = 0; i < chains_per_thread; i++) {
AsmJit::GPVar position = c.newGP();
c.mov(position, heads[0]);
positions[i] = position;
}
// Loop.
c.bind(L_Loop);
// Process all links
for (int i = 0; i < chains_per_thread; i++) {
// Chase pointer
c.mov(positions[i], ptr(positions[i], offsetof(Chain, next)));
// Prefetch next
if (prefetch)
c.prefetch(ptr(positions[i]), AsmJit::PREFETCH_T0);
}
// Wait
for (int i = 0; i < busy_cycles; i++)
c.nop();
// Test if end reached
c.cmp(heads[0], positions[0]);
c.jne(L_Loop);
// Finish.
c.endFunction();
// Make JIT function.
benchmark fn = AsmJit::function_cast<benchmark>(c.make());
// Ensure that everything is ok.
if (!fn) {
printf("Error making jit function (%u).\n", c.getError());
return 0;
}
return fn;
}
// NOT WRITTEN YET -- DMP
// JUST A PLACE HOLDER!
Chain* Run::stream_mem_init(Chain *mem) {
// fprintf(stderr, "made it into stream_mem_init.\n");
// fprintf(stderr, "chains_per_thread = %ld\n", this->exp->chains_per_thread);
// fprintf(stderr, "iterations = %ld\n", this->exp->iterations);
// fprintf(stderr, "bytes_per_chain = %ld\n", this->exp->bytes_per_chain);
// fprintf(stderr, "stride = %ld\n", this->exp->stride);
int64 local_ops_per_chain = 0;
double* tmp = (double *) mem;
int64 refs_per_line = this->exp->bytes_per_line / sizeof(double);
int64 refs_per_chain = this->exp->bytes_per_chain / sizeof(double);
// fprintf(stderr, "refs_per_chain = %ld\n", refs_per_chain);
for (int64 i = 0; i < refs_per_chain;
i += this->exp->stride * refs_per_line) {
tmp[i] = 0;
local_ops_per_chain += 1;
}
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
// fprintf(stderr, "made it out of stream_mem_init.\n");
return mem;
}
static int64 summ_ck = 0;
void sum_chk(double t) {
if (t != 0)
summ_ck += 1;
}
// NOT WRITTEN YET -- DMP
// JUST A PLACE HOLDER!
static benchmark follow_streams(int64 chains_per_thread, // memory loading per thread
int64 bytes_per_line, // ignored
int64 bytes_per_chain, // ignored
int64 stride, // ignored
int64 busy_cycles, // ignored
bool prefetch // ignored
) {
return 0;
/*
int64 refs_per_line = bytes_per_line / sizeof(double);
int64 refs_per_chain = bytes_per_chain / sizeof(double);
// chase pointers
switch (chains_per_thread) {
default:
case 1:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j];
}
sum_chk(t);
}
break;
case 2:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j];
}
sum_chk(t);
}
break;
case 3:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j];
}
sum_chk(t);
}
break;
case 4:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j];
}
sum_chk(t);
}
break;
case 5:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j];
}
sum_chk(t);
}
break;
case 6:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j];
}
sum_chk(t);
}
break;
case 7:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j];
}
sum_chk(t);
}
break;
case 8:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j];
}
sum_chk(t);
}
break;
case 9:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j];
}
sum_chk(t);
}
break;
case 10:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j];
}
sum_chk(t);
}
break;
case 11:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
double* a10 = (double *) root[10];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j] + a10[j];
}
sum_chk(t);
}
break;
case 12:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
double* a10 = (double *) root[10];
double* a11 = (double *) root[11];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j] + a10[j] + a11[j];
}
sum_chk(t);
}
break;
case 13:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
double* a10 = (double *) root[10];
double* a11 = (double *) root[11];
double* a12 = (double *) root[12];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j] + a10[j] + a11[j] + a12[j];
}
sum_chk(t);
}
break;
case 14:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
double* a10 = (double *) root[10];
double* a11 = (double *) root[11];
double* a12 = (double *) root[12];
double* a13 = (double *) root[13];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j] + a10[j] + a11[j] + a12[j]
+ a13[j];
}
sum_chk(t);
}
break;
case 15:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
double* a10 = (double *) root[10];
double* a11 = (double *) root[11];
double* a12 = (double *) root[12];
double* a13 = (double *) root[13];
double* a14 = (double *) root[14];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j] + a10[j] + a11[j] + a12[j]
+ a13[j] + a14[j];
}
sum_chk(t);
}
break;
case 16:
for (int64 i = 0; i < iterations; i++) {
double t = 0;
double* a0 = (double *) root[0];
double* a1 = (double *) root[1];
double* a2 = (double *) root[2];
double* a3 = (double *) root[3];
double* a4 = (double *) root[4];
double* a5 = (double *) root[5];
double* a6 = (double *) root[6];
double* a7 = (double *) root[7];
double* a8 = (double *) root[8];
double* a9 = (double *) root[9];
double* a10 = (double *) root[10];
double* a11 = (double *) root[11];
double* a12 = (double *) root[12];
double* a13 = (double *) root[13];
double* a14 = (double *) root[14];
double* a15 = (double *) root[15];
for (int64 j = 0; j < refs_per_chain; j += stride * refs_per_line) {
t += a0[j] + a1[j] + a2[j] + a3[j] + a4[j] + a5[j] + a6[j]
+ a7[j] + a8[j] + a9[j] + a10[j] + a11[j] + a12[j]
+ a13[j] + a14[j] + a15[j];
}
sum_chk(t);
}
break;
}
*/
}
|