1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/*******************************************************************************
* Copyright (c) 2006 International Business Machines Corporation. *
* All rights reserved. This program and the accompanying materials *
* are made available under the terms of the Common Public License v1.0 *
* which accompanies this distribution, and is available at *
* http://www.opensource.org/licenses/cpl1.0.php *
* *
* Contributors: *
* Douglas M. Pase - initial API and implementation *
* Tim Besard - prefetching, JIT compilation *
*******************************************************************************/
//
// Configuration
//
// Implementation header
#include "run.h"
// System includes
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <cstddef>
#include <algorithm>
#if defined(NUMA)
#include <numa.h>
#endif
// Local includes
#include <AsmJit/AsmJit.h>
#include "timer.h"
//
// Implementation
//
typedef void (*benchmark)(const Chain**);
typedef benchmark (*generator)(int64 chains_per_thread,
int64 bytes_per_line, int64 bytes_per_chain,
int64 stride, int64 loop_length, int32 prefetch_hint);
static benchmark chase_pointers(int64 chains_per_thread,
int64 bytes_per_line, int64 bytes_per_chain,
int64 stride, int64 loop_length, int32 prefetch_hint);
Lock Run::global_mutex;
int64 Run::_ops_per_chain = 0;
std::vector<double> Run::_seconds;
Run::Run() :
exp(NULL), bp(NULL) {
}
Run::~Run() {
}
void Run::set(Experiment &e, SpinBarrier* sbp) {
this->exp = &e;
this->bp = sbp;
}
int Run::run() {
// first allocate all memory for the chains,
// making sure it is allocated within the
// intended numa domains
Chain** chain_memory = new Chain*[this->exp->chains_per_thread];
Chain** root = new Chain*[this->exp->chains_per_thread];
#if defined(NUMA)
// establish the node id where this thread
// will run. threads are mapped to nodes
// by the set-up code for Experiment.
int run_node_id = this->exp->thread_domain[this->thread_id()];
numa_run_on_node(run_node_id);
// establish the node id where this thread's
// memory will be allocated.
for (int i=0; i < this->exp->chains_per_thread; i++) {
int alloc_node_id = this->exp->chain_domain[this->thread_id()][i];
nodemask_t alloc_mask;
nodemask_zero(&alloc_mask);
nodemask_set(&alloc_mask, alloc_node_id);
numa_set_membind(&alloc_mask);
chain_memory[i] = new Chain[ this->exp->links_per_chain ];
}
#else
for (int i = 0; i < this->exp->chains_per_thread; i++) {
chain_memory[i] = new Chain[this->exp->links_per_chain];
}
#endif
// initialize the chains and
// select the function that
// will generate the tests
generator gen;
for (int i = 0; i < this->exp->chains_per_thread; i++) {
if (this->exp->access_pattern == Experiment::RANDOM) {
root[i] = random_mem_init(chain_memory[i]);
gen = chase_pointers;
} else if (this->exp->access_pattern == Experiment::STRIDED) {
if (0 < this->exp->stride) {
root[i] = forward_mem_init(chain_memory[i]);
} else {
root[i] = reverse_mem_init(chain_memory[i]);
}
gen = chase_pointers;
}
}
// compile benchmark
benchmark bench = gen(this->exp->chains_per_thread,
this->exp->bytes_per_line, this->exp->bytes_per_chain,
this->exp->stride, this->exp->loop_length,
this->exp->prefetch_hint);
// calculate the number of iterations
/*
* As soon as the thread count rises, this calculation HUGELY
* differs between runs. What does cause this? Threads are already
* limited to certain CPUs, so it's not caused by excessive switching.
* Strange cache behaviour?
*/
if (0 == this->exp->iterations) {
volatile static double istart = 0;
volatile static double istop = 0;
volatile static double elapsed = 0;
volatile static int64 iters = 1;
volatile double bound = std::max(0.2, 10 * Timer::resolution());
for (iters = 1; elapsed <= bound; iters = iters << 1) {
// barrier
this->bp->barrier();
// start timer
if (this->thread_id() == 0) {
istart = Timer::seconds();
}
this->bp->barrier();
// chase pointers
for (int i = 0; i < iters; i++)
bench((const Chain**) root);
// barrier
this->bp->barrier();
// stop timer
if (this->thread_id() == 0) {
istop = Timer::seconds();
elapsed = istop - istart;
}
this->bp->barrier();
}
// calculate the number of iterations
if (this->thread_id() == 0) {
if (0 < this->exp->seconds) {
this->exp->iterations = std::max(1.0,
0.9999 + 0.5 * this->exp->seconds * iters / elapsed);
} else {
this->exp->iterations = std::max(1.0, 0.9999 + iters / elapsed);
}
//printf("Tested %d iterations: took %f seconds; scheduling %d iterations\n", iters, elapsed, this->exp->iterations);
}
this->bp->barrier();
}
// run the experiments
for (int e = 0; e < this->exp->experiments; e++) {
// barrier
this->bp->barrier();
// start timer
double start = 0;
if (this->thread_id() == 0)
start = Timer::seconds();
this->bp->barrier();
// chase pointers
for (int i = 0; i < this->exp->iterations; i++)
bench((const Chain**) root);
// barrier
this->bp->barrier();
// stop timer
double stop = 0;
if (this->thread_id() == 0)
stop = Timer::seconds();
this->bp->barrier();
if (0 <= e) {
if (this->thread_id() == 0) {
double delta = stop - start;
if (0 < delta) {
Run::_seconds.push_back(delta);
}
}
}
}
this->bp->barrier();
// clean the memory
for (int i = 0; i < this->exp->chains_per_thread; i++) {
if (chain_memory[i] != NULL
) delete[] chain_memory[i];
}
if (chain_memory != NULL
) delete[] chain_memory;
return 0;
}
int dummy = 0;
void Run::mem_check(Chain *m) {
if (m == NULL
) dummy += 1;
}
// exclude 2 and Mersenne primes, i.e.,
// primes of the form 2**n - 1, e.g.,
// 3, 7, 31, 127
static const int prime_table[] = { 5, 11, 13, 17, 19, 23, 37, 41, 43, 47, 53,
61, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 131, 137, 139, 149, 151,
157, 163, };
static const int prime_table_size = sizeof prime_table / sizeof prime_table[0];
Chain*
Run::random_mem_init(Chain *mem) {
// initialize pointers --
// choose a page at random, then use
// one pointer from each cache line
// within the page. all pages and
// cache lines are chosen at random.
Chain* root = 0;
Chain* prev = 0;
int link_within_line = 0;
int64 local_ops_per_chain = 0;
// we must set a lock because random()
// is not thread safe
Run::global_mutex.lock();
setstate(this->exp->random_state[this->thread_id()]);
int page_factor = prime_table[random() % prime_table_size];
int page_offset = random() % this->exp->pages_per_chain;
Run::global_mutex.unlock();
// loop through the pages
for (int i = 0; i < this->exp->pages_per_chain; i++) {
int page = (page_factor * i + page_offset) % this->exp->pages_per_chain;
Run::global_mutex.lock();
setstate(this->exp->random_state[this->thread_id()]);
int line_factor = prime_table[random() % prime_table_size];
int line_offset = random() % this->exp->lines_per_page;
Run::global_mutex.unlock();
// loop through the lines within a page
for (int j = 0; j < this->exp->lines_per_page; j++) {
int line_within_page = (line_factor * j + line_offset)
% this->exp->lines_per_page;
int link = page * this->exp->links_per_page
+ line_within_page * this->exp->links_per_line
+ link_within_line;
if (root == 0) {
prev = root = mem + link;
local_ops_per_chain += 1;
} else {
prev->next = mem + link;
prev = prev->next;
local_ops_per_chain += 1;
}
}
}
prev->next = root;
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
return root;
}
Chain*
Run::forward_mem_init(Chain *mem) {
Chain* root = 0;
Chain* prev = 0;
int link_within_line = 0;
int64 local_ops_per_chain = 0;
for (int i = 0; i < this->exp->lines_per_chain; i += this->exp->stride) {
int link = i * this->exp->links_per_line + link_within_line;
if (root == NULL) {
prev = root = mem + link;
local_ops_per_chain += 1;
} else {
prev->next = mem + link;
prev = prev->next;
local_ops_per_chain += 1;
}
}
prev->next = root;
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
return root;
}
Chain*
Run::reverse_mem_init(Chain *mem) {
Chain* root = 0;
Chain* prev = 0;
int link_within_line = 0;
int64 local_ops_per_chain = 0;
int stride = -this->exp->stride;
int last;
for (int i = 0; i < this->exp->lines_per_chain; i += stride) {
last = i;
}
for (int i = last; 0 <= i; i -= stride) {
int link = i * this->exp->links_per_line + link_within_line;
if (root == 0) {
prev = root = mem + link;
local_ops_per_chain += 1;
} else {
prev->next = mem + link;
prev = prev->next;
local_ops_per_chain += 1;
}
}
prev->next = root;
Run::global_mutex.lock();
Run::_ops_per_chain = local_ops_per_chain;
Run::global_mutex.unlock();
return root;
}
static benchmark chase_pointers(int64 chains_per_thread, // memory loading per thread
int64 bytes_per_line, // ignored
int64 bytes_per_chain, // ignored
int64 stride, // ignored
int64 loop_length, // length of the inner loop
int32 prefetch_hint // use of prefetching
) {
// Create Compiler.
AsmJit::Compiler c;
// Tell compiler the function prototype we want. It allocates variables representing
// function arguments that can be accessed through Compiler or Function instance.
c.newFunction(AsmJit::CALL_CONV_DEFAULT, AsmJit::FunctionBuilder1<AsmJit::Void, const Chain**>());
// Try to generate function without prolog/epilog code:
c.getFunction()->setHint(AsmJit::FUNCTION_HINT_NAKED, true);
// Create labels.
AsmJit::Label L_Loop = c.newLabel();
// Function arguments.
AsmJit::GPVar chain(c.argGP(0));
// Save the head
std::vector<AsmJit::GPVar> heads(chains_per_thread);
for (int i = 0; i < chains_per_thread; i++) {
AsmJit::GPVar head = c.newGP();
c.mov(head, ptr(chain));
heads[i] = head;
}
// Current position
std::vector<AsmJit::GPVar> positions(chains_per_thread);
for (int i = 0; i < chains_per_thread; i++) {
AsmJit::GPVar position = c.newGP();
c.mov(position, heads[0]);
positions[i] = position;
}
// Loop.
c.bind(L_Loop);
// Process all links
for (int i = 0; i < chains_per_thread; i++) {
// Chase pointer
c.mov(positions[i], ptr(positions[i], offsetof(Chain, next)));
// Prefetch next
switch (prefetch_hint)
{
case Experiment::T0:
c.prefetch(ptr(positions[i]), AsmJit::PREFETCH_T0);
break;
case Experiment::T1:
c.prefetch(ptr(positions[i]), AsmJit::PREFETCH_T1);
break;
case Experiment::T2:
c.prefetch(ptr(positions[i]), AsmJit::PREFETCH_T2);
break;
case Experiment::NTA:
c.prefetch(ptr(positions[i]), AsmJit::PREFETCH_NTA);
break;
case Experiment::NONE:
default:
break;
}
}
// Wait
for (int i = 0; i < loop_length; i++)
c.nop();
// Test if end reached
c.cmp(heads[0], positions[0]);
c.jne(L_Loop);
// Finish.
c.endFunction();
// Make JIT function.
benchmark fn = AsmJit::function_cast<benchmark>(c.make());
// Ensure that everything is ok.
if (!fn) {
printf("Error making jit function (%u).\n", c.getError());
return 0;
}
return fn;
}
|