diff options
Diffstat (limited to 'UNI')
-rw-r--r-- | UNI/Makefile | 45 | ||||
-rw-r--r-- | UNI/baselines/cpu/Makefile | 6 | ||||
-rw-r--r-- | UNI/baselines/cpu/README | 12 | ||||
-rw-r--r-- | UNI/baselines/cpu/app_baseline.c | 143 | ||||
-rw-r--r-- | UNI/baselines/gpu/Makefile | 5 | ||||
-rw-r--r-- | UNI/baselines/gpu/README | 20 | ||||
-rw-r--r-- | UNI/baselines/gpu/ds.h | 293 | ||||
-rw-r--r-- | UNI/baselines/gpu/kernel.cu | 91 | ||||
-rw-r--r-- | UNI/baselines/gpu/unique.cu | 197 | ||||
-rw-r--r-- | UNI/dpu/task.c | 147 | ||||
-rw-r--r-- | UNI/host/app.c | 277 | ||||
-rwxr-xr-x | UNI/support/common.h | 46 | ||||
-rw-r--r-- | UNI/support/params.h | 56 | ||||
-rwxr-xr-x | UNI/support/timer.h | 59 |
14 files changed, 1397 insertions, 0 deletions
diff --git a/UNI/Makefile b/UNI/Makefile new file mode 100644 index 0000000..65c7962 --- /dev/null +++ b/UNI/Makefile @@ -0,0 +1,45 @@ +DPU_DIR := dpu +HOST_DIR := host +BUILDDIR ?= bin +NR_TASKLETS ?= 16 +BL ?= 10 +NR_DPUS ?= 1 +ENERGY ?= 0 + +define conf_filename + ${BUILDDIR}/.NR_DPUS_$(1)_NR_TASKLETS_$(2)_BL_$(3).conf +endef +CONF := $(call conf_filename,${NR_DPUS},${NR_TASKLETS},${BL}) + +HOST_TARGET := ${BUILDDIR}/host_code +DPU_TARGET := ${BUILDDIR}/dpu_code + +COMMON_INCLUDES := support +HOST_SOURCES := $(wildcard ${HOST_DIR}/*.c) +DPU_SOURCES := $(wildcard ${DPU_DIR}/*.c) + +.PHONY: all clean test + +__dirs := $(shell mkdir -p ${BUILDDIR}) + +COMMON_FLAGS := -Wall -Wextra -g -I${COMMON_INCLUDES} +HOST_FLAGS := ${COMMON_FLAGS} -std=c11 -O3 `dpu-pkg-config --cflags --libs dpu` -DNR_TASKLETS=${NR_TASKLETS} -DNR_DPUS=${NR_DPUS} -DBL=${BL} -DENERGY=${ENERGY} +DPU_FLAGS := ${COMMON_FLAGS} -O2 -DNR_TASKLETS=${NR_TASKLETS} -DBL=${BL} + +all: ${HOST_TARGET} ${DPU_TARGET} + +${CONF}: + $(RM) $(call conf_filename,*,*) + touch ${CONF} + +${HOST_TARGET}: ${HOST_SOURCES} ${COMMON_INCLUDES} ${CONF} + $(CC) -o $@ ${HOST_SOURCES} ${HOST_FLAGS} + +${DPU_TARGET}: ${DPU_SOURCES} ${COMMON_INCLUDES} ${CONF} + dpu-upmem-dpurte-clang ${DPU_FLAGS} -o $@ ${DPU_SOURCES} + +clean: + $(RM) -r $(BUILDDIR) + +test: all + ./${HOST_TARGET} diff --git a/UNI/baselines/cpu/Makefile b/UNI/baselines/cpu/Makefile new file mode 100644 index 0000000..a1b4766 --- /dev/null +++ b/UNI/baselines/cpu/Makefile @@ -0,0 +1,6 @@ +all: + gcc -o uni -fopenmp app_baseline.c + +clean: + rm uni + diff --git a/UNI/baselines/cpu/README b/UNI/baselines/cpu/README new file mode 100644 index 0000000..4263de5 --- /dev/null +++ b/UNI/baselines/cpu/README @@ -0,0 +1,12 @@ +Unique (UNI) + +Compilation instructions + + make + +Execution instructions + + ./uni -i 1258291200 -t 4 + +Read more +J. Gomez-Luna et al., “In-place Data Sliding Algorithms for Many-core Architectures,” ICPP 2015. diff --git a/UNI/baselines/cpu/app_baseline.c b/UNI/baselines/cpu/app_baseline.c new file mode 100644 index 0000000..9d3184c --- /dev/null +++ b/UNI/baselines/cpu/app_baseline.c @@ -0,0 +1,143 @@ +#include <stdio.h> +#include <stdlib.h> +#include <stdbool.h> +#include <string.h> +#include <unistd.h> +#include <getopt.h> +#include <assert.h> +#include <stdint.h> + +#include <omp.h> +#include "../../support/timer.h" + +#define T int64_t + +static int pos; + +static T *A; +static T *B; +static T *C; +static T *C2; + +// Create a "test file" +static T *create_test_file(unsigned int nr_elements) { + //srand(0); + + A = (T*) malloc(nr_elements * sizeof(T)); + B = (T*) malloc(nr_elements * sizeof(T)); + C = (T*) malloc(nr_elements * sizeof(T)); + + printf("nr_elements\t%u\t", nr_elements); + for (int i = 0; i < nr_elements; i++) { + //A[i] = (unsigned int) (rand()); + //A[i] = i+1; + //A[i] = i%2==0?i+1:i; + A[i] = i%2==0?i:i+1; + B[i] = 0; + } + + return A; +} + +// Compute output in the host +static int unique_host(int size, int t) { + pos = 0; + C[pos] = A[pos]; + + omp_set_num_threads(t); + #pragma omp parallel for + for(int my = 1; my < size; my++) { + if(A[my] != A[my-1]) { + int p; + #pragma omp atomic update + pos++; + p = pos; + C[p] = A[my]; + } + } + + return pos; +} + +// Params +typedef struct Params { + int input_size; + int n_warmup; + int n_reps; + int n_threads; +}Params; + +void usage() { + fprintf(stderr, + "\nUsage: ./program [options]" + "\n" + "\nGeneral options:" + "\n -h help" + "\n -t <T> # of threads (default=8)" + "\n -w <W> # of untimed warmup iterations (default=1)" + "\n -e <E> # of timed repetition iterations (default=3)" + "\n" + "\nBenchmark-specific options:" + "\n -i <I> input size (default=8M elements)" + "\n"); +} + +struct Params input_params(int argc, char **argv) { + struct Params p; + p.input_size = 16 << 20; + p.n_warmup = 1; + p.n_reps = 3; + p.n_threads = 8; + + int opt; + while((opt = getopt(argc, argv, "hd:i:w:e:t:")) >= 0) { + switch(opt) { + case 'h': + usage(); + exit(0); + break; + case 'i': p.input_size = atoi(optarg); break; + case 'w': p.n_warmup = atoi(optarg); break; + case 'e': p.n_reps = atoi(optarg); break; + case 't': p.n_threads = atoi(optarg); break; + default: + fprintf(stderr, "\nUnrecognized option!\n"); + usage(); + exit(0); + } + } + assert(p.n_threads > 0 && "Invalid # of ranks!"); + + return p; +} + +// Main +int main(int argc, char **argv) { + + struct Params p = input_params(argc, argv); + + const unsigned int file_size = p.input_size; + uint32_t accum = 0; + int total_count; + + // Create an input file with arbitrary data + create_test_file(file_size); + + Timer timer; + start(&timer, 0, 0); + + total_count = unique_host(file_size, p.n_threads); + + stop(&timer, 0); + + printf("Total count = %d\t", total_count); + + printf("Kernel "); + print(&timer, 0, 1); + printf("\n"); + + free(A); + free(B); + free(C); + return 0; + } diff --git a/UNI/baselines/gpu/Makefile b/UNI/baselines/gpu/Makefile new file mode 100644 index 0000000..e8412b7 --- /dev/null +++ b/UNI/baselines/gpu/Makefile @@ -0,0 +1,5 @@ +all: + /usr/local/cuda/bin/nvcc unique.cu -I/usr/local/cuda/include -lm -o unique -D COARSENING=32 -D THREADS=512 -D INT64 + +clean: + rm unique diff --git a/UNI/baselines/gpu/README b/UNI/baselines/gpu/README new file mode 100644 index 0000000..bee7280 --- /dev/null +++ b/UNI/baselines/gpu/README @@ -0,0 +1,20 @@ +Unique (UNI) + +Compilation instructions + + make + +Execution instructions + + ./unique 0 50 1258291200 + +Compilation flags + + FLOAT - For single precision arrays (Default: Double precision) + INT - For integer arrays + THREADS - Thread block size (Default: 1024) + COARSENING - Coarsening factor (Default: 16 (SP and INT); 8 (DP)) + ATOMIC - Global atomics for synchronization (Default: No atomics) + +Read more +J. Gomez-Luna et al., “In-place Data Sliding Algorithms for Many-core Architectures,” ICPP 2015. diff --git a/UNI/baselines/gpu/ds.h b/UNI/baselines/gpu/ds.h new file mode 100644 index 0000000..1fa73de --- /dev/null +++ b/UNI/baselines/gpu/ds.h @@ -0,0 +1,293 @@ +/*************************************************************************** + *cr + *cr (C) Copyright 2015 The Board of Trustees of the + *cr University of Illinois + *cr All Rights Reserved + *cr + ***************************************************************************/ +/* + In-Place Data Sliding Algorithms for Many-Core Architectures, presented in ICPP’15 + + Copyright (c) 2015 University of Illinois at Urbana-Champaign. + All rights reserved. + + Permission to use, copy, modify and distribute this software and its documentation for + educational purpose is hereby granted without fee, provided that the above copyright + notice and this permission notice appear in all copies of this software and that you do + not sell the software. + + THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,EXPRESS, IMPLIED OR + OTHERWISE. + + Authors: Juan Gómez-Luna (el1goluj@uco.es, gomezlun@illinois.edu), Li-Wen Chang (lchang20@illinois.edu) +*/ + +#include <iostream> +#include <fstream> +#include <cstdlib> +#include <ctime> +#include <cstdio> +#include <math.h> +#include <sys/time.h> +#include <vector> + +#ifdef FLOAT +#define T float +#elif INT +#define T int +#elif INT64 +#define T int64_t +#else +#define T double +#endif + +#ifdef THREADS +#define L_DIM THREADS +#else +#define L_DIM 1024 +#endif + +#ifdef COARSENING +#define REGS COARSENING +#else +#ifdef FLOAT +#define REGS 16 +#elif INT +#define REGS 16 +#else +#define REGS 8 +#endif +#endif + +#ifdef ATOMIC +#define ATOM 1 +#else +#define ATOM 0 +#endif + +#define WARP_SIZE 32 + +#define PRINT 0 + +// Dynamic allocation of runtime workgroup id +__device__ int dynamic_wg_id(volatile unsigned int *flags, const int num_flags){ + __shared__ int gid_; + if (threadIdx.x == 0) gid_ = atomicAdd((unsigned int*)&flags[num_flags + 1], 1); + __syncthreads(); + int my_s = gid_; + return my_s; +} + +// Set global synchronization (regular DS) +__device__ void ds_sync(volatile unsigned int *flags, const int my_s){ +#if ATOM + if (threadIdx.x == 0){ + while (atomicOr((unsigned int*)&flags[my_s], 0) == 0){} + atomicOr((unsigned int*)&flags[my_s + 1], 1); + } +#else + if (threadIdx.x == 0){ + while (flags[my_s] == 0){} + flags[my_s + 1] = 1; + } +#endif + __syncthreads(); +} + +// Set global synchronization (irregular DS) +__device__ void ds_sync_irregular(volatile unsigned int *flags, const int my_s, int *count){ +#if ATOM + if (threadIdx.x == 0){ + while (atomicOr((unsigned int*)&flags[my_s], 0) == 0){} + int flag = flags[my_s]; + atomicAdd((unsigned int*)&flags[my_s + 1], flag + *count); + *count = flag - 1; + } +#else + if (threadIdx.x == 0){ + while (flags[my_s] == 0){} + int flag = flags[my_s]; + flags[my_s + 1] = flag + *count; + *count = flag - 1; + } +#endif + __syncthreads(); +} + +// Set global synchronization (irregular DS Partition) +__device__ void ds_sync_irregular_partition(volatile unsigned int *flags1, volatile unsigned int *flags2, const int my_s, int *count1, int *count2){ +#if ATOM + if (threadIdx.x == 0){ + while (atomicOr((unsigned int*)&flags1[my_s], 0) == 0){} + int flag2 = flags2[my_s]; + atomicAdd((unsigned int*)&flags2[my_s + 1], flag2 + *count); + int flag1 = flags1[my_s]; + atomicAdd((unsigned int*)&flags1[my_s + 1], flag1 + *count); + *count1 = flag1 - 1; + *count2 = flag2 - 1; + } +#else + if (threadIdx.x == 0){ + while (flags1[my_s] == 0){} + int flag2 = flags2[my_s]; + flags2[my_s + 1] = flag2 + *count2; + int flag1 = flags1[my_s]; + flags1[my_s + 1] = flag1 + *count1; + *count1 = flag1 - 1; + *count2 = flag2 - 1; + } +#endif + __syncthreads(); +} + +// Reduction kernel (CUDA SDK reduce6) +template <class S> +__device__ void reduction(S *count, S local_cnt){ + __shared__ S sdata[L_DIM]; + + unsigned int tid = threadIdx.x; + S mySum = local_cnt; + + // each thread puts its local sum into shared memory + sdata[tid] = local_cnt; + __syncthreads(); + + // do reduction in shared mem + if ((blockDim.x >= 1024) && (tid < 512)){ + sdata[tid] = mySum = mySum + sdata[tid + 512]; + } + __syncthreads(); + + if ((blockDim.x >= 512) && (tid < 256)){ + sdata[tid] = mySum = mySum + sdata[tid + 256]; + } + __syncthreads(); + + if ((blockDim.x >= 256) && (tid < 128)){ + sdata[tid] = mySum = mySum + sdata[tid + 128]; + } + __syncthreads(); + + if ((blockDim.x >= 128) && (tid < 64)){ + sdata[tid] = mySum = mySum + sdata[tid + 64]; + } + __syncthreads(); + +#if (__CUDA_ARCH__ >= 300 ) + if ( tid < 32 ){ + // Fetch final intermediate sum from 2nd warp + if (blockDim.x >= 64) mySum += sdata[tid + 32]; + // Reduce final warp using shuffle + #pragma unroll + for (int offset = WARP_SIZE/2; offset > 0; offset /= 2){ + //mySum += __shfl_down(mySum, offset); + mySum += __shfl_xor(mySum, offset); + } + } +#else + // fully unroll reduction within a single warp + if ((blockDim.x >= 64) && (tid < 32)){ + sdata[tid] = mySum = mySum + sdata[tid + 32]; + } + __syncthreads(); + + if ((blockDim.x >= 32) && (tid < 16)){ + sdata[tid] = mySum = mySum + sdata[tid + 16]; + } + __syncthreads(); + + if ((blockDim.x >= 16) && (tid < 8)){ + sdata[tid] = mySum = mySum + sdata[tid + 8]; + } + __syncthreads(); + + if ((blockDim.x >= 8) && (tid < 4)){ + sdata[tid] = mySum = mySum + sdata[tid + 4]; + } + __syncthreads(); + + if ((blockDim.x >= 4) && (tid < 2)){ + sdata[tid] = mySum = mySum + sdata[tid + 2]; + } + __syncthreads(); + + if ((blockDim.x >= 2) && ( tid < 1)){ + sdata[tid] = mySum = mySum + sdata[tid + 1]; + } + __syncthreads(); +#endif + + // write result for this block to global mem + if (tid == 0) *count = mySum; +} + +// Binary prefix-sum (GPU Computing Gems) +__device__ inline int lane_id(void) { return threadIdx.x % WARP_SIZE; } +__device__ inline int warp_id(void) { return threadIdx.x / WARP_SIZE; } + +__device__ unsigned int warp_prefix_sums(bool p){ + unsigned int b = __ballot(p); + return __popc(b & ((1 << lane_id()) - 1)); +} + +__device__ int warp_scan(int val, volatile int *s_data){ +#if (__CUDA_ARCH__ < 300 ) + int idx = 2 * threadIdx.x - (threadIdx.x & (WARP_SIZE - 1)); + s_data[idx] = 0; + idx += WARP_SIZE; + int t = s_data[idx] = val; + s_data[idx] = t = t + s_data[idx - 1]; + s_data[idx] = t = t + s_data[idx - 2]; + s_data[idx] = t = t + s_data[idx - 4]; + s_data[idx] = t = t + s_data[idx - 8]; + s_data[idx] = t = t + s_data[idx - 16]; + return s_data[idx - 1]; +#else + int x = val; + #pragma unroll + for(int offset = 1; offset < 32; offset <<= 1){ + // From GTC: Kepler shuffle tips and tricks: +#if 0 + int y = __shfl_up(x, offset); + if(lane_id() >= offset) + x += y; +#else + asm volatile("{" + " .reg .s32 r0;" + " .reg .pred p;" + " shfl.up.b32 r0|p, %0, %1, 0x0;" + " @p add.s32 r0, r0, %0;" + " mov.s32 %0, r0;" + "}" : "+r"(x) : "r"(offset)); +#endif + } + return x - val; +#endif +} + +__device__ int block_binary_prefix_sums(int* count, int x){ + + __shared__ int sdata[L_DIM]; + + // A. Exclusive scan within each warp + int warpPrefix = warp_prefix_sums(x); + + // B. Store in shared memory + if(lane_id() == WARP_SIZE - 1) + sdata[warp_id()] = warpPrefix + x; + __syncthreads(); + + // C. One warp scans in shared memory + if(threadIdx.x < WARP_SIZE) + sdata[threadIdx.x] = warp_scan(sdata[threadIdx.x], sdata); + __syncthreads(); + + // D. Each thread calculates it final value + int thread_out_element = warpPrefix + sdata[warp_id()]; + int output = thread_out_element + *count; + __syncthreads(); + if(threadIdx.x == blockDim.x - 1) + *count += (thread_out_element + x); + + return output; +} diff --git a/UNI/baselines/gpu/kernel.cu b/UNI/baselines/gpu/kernel.cu new file mode 100644 index 0000000..5cd9ea4 --- /dev/null +++ b/UNI/baselines/gpu/kernel.cu @@ -0,0 +1,91 @@ +/*************************************************************************** + *cr + *cr (C) Copyright 2015 The Board of Trustees of the + *cr University of Illinois + *cr All Rights Reserved + *cr + ***************************************************************************/ +/* + In-Place Data Sliding Algorithms for Many-Core Architectures, presented in ICPP’15 + + Copyright (c) 2015 University of Illinois at Urbana-Champaign. + All rights reserved. + + Permission to use, copy, modify and distribute this software and its documentation for + educational purpose is hereby granted without fee, provided that the above copyright + notice and this permission notice appear in all copies of this software and that you do + not sell the software. + + THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,EXPRESS, IMPLIED OR + OTHERWISE. + + Authors: Juan Gómez-Luna (el1goluj@uco.es, gomezlun@illinois.edu), Li-Wen Chang (lchang20@illinois.edu) +*/ + +__device__ T warp_up(T reg, int delta){ + __shared__ volatile T R[L_DIM]; + + R[threadIdx.x] = reg; + + return (lane_id() - delta >= 0 ? R[threadIdx.x - delta] : 0); +} +__device__ T __shuffle_up(T* matrix, int my_s, int pos, T regi, int i){ +#if (__CUDA_ARCH__ >= 300 ) + T p = __shfl_up(regi, 1); +#else + T p = warp_up(regi, 1); +#endif + if(lane_id() == 0 && i > 0) + p = matrix[pos - 1]; + if(lane_id() == 0 && threadIdx.x != 0 && i == 0) + p = matrix[pos - 1]; + if(my_s > 0 && threadIdx.x == 0 && i == 0) + p = matrix[pos - 1]; + if(my_s == 0 && threadIdx.x == 0 && i == 0) + p = -1; + return p; +} + +__global__ void unique(T *matrix_out, T *matrix, + int size, + volatile unsigned int *flags) +{ + __shared__ int count; // Counter for number of non-zero elements per block + const int num_flags = size % (blockDim.x * REGS) == 0 ? size / (blockDim.x * REGS) : size / (blockDim.x * REGS) + 1; + + // Dynamic allocation of runtime workgroup id + if (threadIdx.x == 0) count = 0; + const int my_s = dynamic_wg_id(flags, num_flags); + + int local_cnt = 0; + // Declare on-chip memory + T reg[REGS]; + int pos = my_s * REGS * blockDim.x + threadIdx.x; + // Load in on-chip memory + #pragma unroll + for (int j = 0; j < REGS; j++){ + if (pos < size){ + reg[j] = matrix[pos]; + if(reg[j] != __shuffle_up(matrix, my_s, pos, reg[j], j)) + local_cnt++; + else + reg[j] = -1; + } + else + reg[j] = -1; + pos += blockDim.x; + } + reduction<int>(&count, local_cnt); + + // Set global synch + ds_sync_irregular(flags, my_s, &count); + + // Store to global memory + #pragma unroll + for (int j = 0; j < REGS; j++){ + pos = block_binary_prefix_sums(&count, reg[j] >= 0); + if (reg[j] >= 0){ + matrix_out[pos] = reg[j]; + } + } +} diff --git a/UNI/baselines/gpu/unique.cu b/UNI/baselines/gpu/unique.cu new file mode 100644 index 0000000..12d21fc --- /dev/null +++ b/UNI/baselines/gpu/unique.cu @@ -0,0 +1,197 @@ +/*************************************************************************** + *cr + *cr (C) Copyright 2015 The Board of Trustees of the + *cr University of Illinois + *cr All Rights Reserved + *cr + ***************************************************************************/ +/* + In-Place Data Sliding Algorithms for Many-Core Architectures, presented in ICPP’15 + + Copyright (c) 2015 University of Illinois at Urbana-Champaign. + All rights reserved. + + Permission to use, copy, modify and distribute this software and its documentation for + educational purpose is hereby granted without fee, provided that the above copyright + notice and this permission notice appear in all copies of this software and that you do + not sell the software. + + THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,EXPRESS, IMPLIED OR + OTHERWISE. + + Authors: Juan Gómez-Luna (el1goluj@uco.es, gomezlun@illinois.edu), Li-Wen Chang (lchang20@illinois.edu) +*/ + +#include "ds.h" +#include "kernel.cu" + +// Sequential CPU version +void cpu_unique(T* output, T* input, int elements){ + int j = 0; + output[j] = input[j]; + j++; + for (int i = 1; i < elements; i++){ + if (input[i] != input[i-1]){ + output[j] = input[i]; + j++; + } + } +} + +int main(int argc, char **argv){ + + // Syntax verification + if (argc != 4) { + printf("Wrong format\n"); + printf("Syntax: %s <Device Input (%% elements) numElements>\n",argv[0]); + exit(1); + } + int device = atoi(argv[1]); + int input = atoi(argv[2]); + int numElements = atoi(argv[3]); + size_t size = numElements * sizeof(T); + + // Set device + cudaDeviceProp device_properties; + cudaGetDeviceProperties(&device_properties,device); + cudaSetDevice(device); + + printf("DS Unique on %s\n", device_properties.name); + printf("Thread block size = %d\n", L_DIM); + printf("Coarsening factor = %d\n", REGS); +#ifdef FLOAT + printf("Single precision array: %d elements\n", numElements); +#elif INT + printf("Integer array: %d elements\n", numElements); +#else + printf("Double precision array: %d elements\n", numElements); +#endif + + // Event creation + cudaEvent_t start, stop; + cudaEventCreate(&start); + cudaEventCreate(&stop); + + float time1 = 0; + float time2 = 0; + + // Allocate the host input vector A + T *h_A = (T*)malloc(size); + + // Allocate the host output vectors + T *h_B = (T*)malloc(size); + T *h_C = (T*)malloc(size); + + // Allocate the device input vector A + T *d_A = NULL; + cudaMalloc((void **)&d_A, size); + +#define WARMUP 0 +#define REP 1 + int value1 = 0; + int value2 = 1; + int value3 = 2; + int value4 = 3; + unsigned int flagM = 0; + for(int iteration = 0; iteration < REP+WARMUP; iteration++){ + // Initialize the host input vectors + srand(2014); + for(int i = 0; i < numElements; i++){ + h_A[i] = value1; + if(i >= numElements/4 && i < numElements/2) h_A[i] = value2; + if(i >= numElements/2 && i < 3*numElements/4) h_A[i] = value3; + if(i >= 3*numElements/4 && i < numElements) h_A[i] = value4; + } + int M = (numElements * input)/100; + int m = M; + while(m>0){ + int x = (int)(numElements*(((float)rand()/(float)RAND_MAX))); + if(h_A[x]==value1 || h_A[x]==value2 || h_A[x]==value3 || h_A[x]==value4){ + h_A[x] = x+2; + m--; + } + } + +#if PRINT + printf("\n"); + for(int i = 0; i < numElements; ++i){ + printf("%d ",*(h_A+i)); + } + printf("\n"); +#endif + + // Copy the host input vector A in host memory to the device input vector in device memory + cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); + + int ldim = L_DIM; + // Atomic flags + unsigned int* d_flags = NULL; + int num_flags = numElements % (ldim * REGS) == 0 ? numElements / (ldim * REGS) : numElements / (ldim * REGS) + 1; + unsigned int *flags = (unsigned int *)calloc(sizeof(unsigned int), num_flags + 2); + flags[0] = 1; + flags[num_flags + 1] = 0; + cudaMalloc((void **)&d_flags, (num_flags + 2) * sizeof(unsigned int)); + cudaMemcpy(d_flags, flags, (num_flags + 2) * sizeof(unsigned int), cudaMemcpyHostToDevice); + free(flags); + // Number of work-groups/thread blocks + int num_wg = num_flags; + + // Start timer + cudaEventRecord( start, 0 ); + + // Kernel launch + unique<<<num_wg, ldim>>>(d_A, d_A, numElements, d_flags); + + cudaMemcpy(&flagM, d_flags + num_flags, sizeof(unsigned int), cudaMemcpyDeviceToHost); + + // End timer + cudaEventRecord( stop, 0 ); + cudaEventSynchronize( stop ); + cudaEventElapsedTime( &time1, start, stop ); + if(iteration >= WARMUP) time2 += time1; + + if(iteration == REP+WARMUP-1){ + float timer = time2 / REP; + double bw = (double)((numElements + flagM) * sizeof(T)) / (double)(timer * 1000000.0); + printf("Execution time = %f ms, Throughput = %f GB/s\n", timer, bw); + } + + // Free flags + cudaFree(d_flags); + } + // Copy to host memory + cudaMemcpy(h_B, d_A, size, cudaMemcpyDeviceToHost); + + // CPU execution for comparison + cpu_unique(h_C, h_A, numElements); + + // Verify that the result vector is correct +#if PRINT + for(int i = 0; i < numElements; ++i){ + printf("%d ",*(h_B+i)); + } + printf("\n"); + for(int i = 0; i < numElements; ++i){ + printf("%d ",*(h_C+i)); + } + printf("\n"); +#endif + for (int i = 0; i < flagM - 1; ++i){ + if (h_B[i] != h_C[i]){ + fprintf(stderr, "Result verification failed at element %d!\n", i); + exit(EXIT_FAILURE); + } + } + printf("Test PASSED\n"); + + // Free device global memory + cudaFree(d_A); + cudaEventDestroy(start); + cudaEventDestroy(stop); + // Free host memory + free(h_A); + free(h_B); + free(h_C); + + return 0; +} diff --git a/UNI/dpu/task.c b/UNI/dpu/task.c new file mode 100644 index 0000000..658d3a1 --- /dev/null +++ b/UNI/dpu/task.c @@ -0,0 +1,147 @@ +/* +* Unique with multiple tasklets +* +*/ +#include <stdint.h> +#include <stdio.h> +#include <defs.h> +#include <mram.h> +#include <alloc.h> +#include <perfcounter.h> +#include <handshake.h> +#include <barrier.h> + +#include "../support/common.h" + +__host dpu_arguments_t DPU_INPUT_ARGUMENTS; +__host dpu_results_t DPU_RESULTS[NR_TASKLETS]; + +// Array for communication between adjacent tasklets +uint32_t message[NR_TASKLETS]; +T message_value[NR_TASKLETS]; +uint32_t message_offset[NR_TASKLETS]; +uint32_t message_partial_count; +T message_last_from_last; + +// UNI in each tasklet +static unsigned int unique(T *output, T *input){ + unsigned int pos = 0; + output[pos] = input[pos]; + pos++; + #pragma unroll + for(unsigned int j = 1; j < REGS; j++) { + if(input[j] != input[j - 1]) { + output[pos] = input[j]; + pos++; + } + } + return pos; +} + +// Handshake with adjacent tasklets +static uint3 handshake_sync(T *output, unsigned int l_count, unsigned int tasklet_id){ + unsigned int p_count, o_count, offset; + // Wait and read message + if(tasklet_id != 0){ + handshake_wait_for(tasklet_id - 1); + p_count = message[tasklet_id]; + offset = (message_value[tasklet_id] == output[0])?1:0; + o_count = message_offset[tasklet_id]; + } + else{ + p_count = 0; + offset = (message_last_from_last == output[0])?1:0; + o_count = 0; + } + // Write message and notify + if(tasklet_id < NR_TASKLETS - 1){ + message[tasklet_id + 1] = p_count + l_count; + message_value[tasklet_id + 1] = output[l_count - 1]; + message_offset[tasklet_id + 1] = o_count + offset; + handshake_notify(); + } + uint3 result = {p_count, o_count, offset}; + return result; +} + +// Barrier +BARRIER_INIT(my_barrier, NR_TASKLETS); + +extern int main_kernel1(void); + +int (*kernels[nr_kernels])(void) = {main_kernel1}; + +int main(void) { + // Kernel + return kernels[DPU_INPUT_ARGUMENTS.kernel](); +} + +// main_kernel1 +int main_kernel1() { + unsigned int tasklet_id = me(); +#if PRINT + printf("tasklet_id = %u\n", tasklet_id); +#endif + if (tasklet_id == 0){ // Initialize once the cycle counter + mem_reset(); // Reset the heap + } + // Barrier + barrier_wait(&my_barrier); + + dpu_results_t *result = &DPU_RESULTS[tasklet_id]; + + uint32_t input_size_dpu_bytes = DPU_INPUT_ARGUMENTS.size; // Input size per DPU in bytes + + // Address of the current processing block in MRAM + uint32_t base_tasklet = tasklet_id << BLOCK_SIZE_LOG2; + uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER; + uint32_t mram_base_addr_B = (uint32_t)(DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes); + + // Initialize a local cache to store the MRAM block + T *cache_A = (T *) mem_alloc(BLOCK_SIZE); + T *cache_B = (T *) mem_alloc(BLOCK_SIZE); + + // Initialize shared variable + if(tasklet_id == NR_TASKLETS - 1){ + message_partial_count = 0; + message_last_from_last = 0xFFFFFFFF; // A value that is not in the input array + } + // Barrier + barrier_wait(&my_barrier); + + unsigned int i = 0; // Iteration count + for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){ + + // Load cache with current MRAM block + mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE); + + // UNI in each tasklet + unsigned int l_count = unique(cache_B, cache_A); // In-place or out-of-place? + + // Sync with adjacent tasklets + uint3 po_count = handshake_sync(cache_B, l_count, tasklet_id); + + // Write cache to current MRAM block + mram_write(&cache_B[po_count.z], (__mram_ptr void*)(mram_base_addr_B + (message_partial_count + po_count.x - po_count.y) * sizeof(T)), l_count * sizeof(T)); + + // First + if(tasklet_id == 0 && i == 0){ + result->first = cache_B[0]; + } + + // Total count in this DPU + if(tasklet_id == NR_TASKLETS - 1){ + message_last_from_last = cache_B[l_count - 1]; + result->last = cache_B[l_count - 1]; + result->t_count = message_partial_count + po_count.x + l_count - po_count.y - po_count.z; + message_partial_count = result->t_count; + } + + // Barrier + barrier_wait(&my_barrier); + + i++; + } + + return 0; +} diff --git a/UNI/host/app.c b/UNI/host/app.c new file mode 100644 index 0000000..1b91bba --- /dev/null +++ b/UNI/host/app.c @@ -0,0 +1,277 @@ +/** +* app.c +* UNI Host Application Source File +* +*/ +#include <stdio.h> +#include <stdlib.h> +#include <stdbool.h> +#include <string.h> +#include <dpu.h> +#include <dpu_log.h> +#include <unistd.h> +#include <getopt.h> +#include <assert.h> + +#include "../support/common.h" +#include "../support/timer.h" +#include "../support/params.h" + +// Define the DPU Binary path as DPU_BINARY here +#ifndef DPU_BINARY +#define DPU_BINARY "./bin/dpu_code" +#endif + +#if ENERGY +#include <dpu_probe.h> +#endif + +// Pointer declaration +static T* A; +static T* C; +static T* C2; + +// Create input arrays +static void read_input(T* A, unsigned int nr_elements, unsigned int nr_elements_round) { + //srand(0); + printf("nr_elements\t%u\t", nr_elements); + for (unsigned int i = 0; i < nr_elements; i++) { + //A[i] = (T) (rand()); + A[i] = i%2==0?i:i+1; + } + for (unsigned int i = nr_elements; i < nr_elements_round; i++) { + A[i] = A[nr_elements - 1]; + } +} + +// Compute output in the host +static unsigned int unique_host(T* C, T* A, unsigned int nr_elements) { + unsigned int pos = 0; + C[pos] = A[pos]; + pos++; + for(unsigned int i = 1; i < nr_elements; i++) { + if(A[i] != A[i-1]) { + C[pos] = A[i]; + pos++; + } + } + return pos; +} + +// Main of the Host Application +int main(int argc, char **argv) { + + struct Params p = input_params(argc, argv); + + struct dpu_set_t dpu_set, dpu; + uint32_t nr_of_dpus; + +#if ENERGY + struct dpu_probe_t probe; + DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); +#endif + + // Allocate DPUs and load binary + DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); + DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); + DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); + printf("Allocated %d DPU(s)\n", nr_of_dpus); + + unsigned int i = 0; + uint32_t accum = 0; + uint32_t total_count = 0; + + const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; // Total input size (weak or strong scaling) + const unsigned int input_size_dpu_ = divceil(input_size, nr_of_dpus); // Input size per DPU (max.) + const unsigned int input_size_dpu_round = + (input_size_dpu_ % (NR_TASKLETS * REGS) != 0) ? roundup(input_size_dpu_, (NR_TASKLETS * REGS)) : input_size_dpu_; // Input size per DPU (max.), 8-byte aligned + + // Input/output allocation + A = malloc(input_size_dpu_round * nr_of_dpus * sizeof(T)); + C = malloc(input_size_dpu_round * nr_of_dpus * sizeof(T)); + C2 = malloc(input_size_dpu_round * nr_of_dpus * sizeof(T)); + T *bufferA = A; + T *bufferC = C2; + + // Create an input file with arbitrary data + read_input(A, input_size, input_size_dpu_round * nr_of_dpus); + + // Timer declaration + Timer timer; + + printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL); + + // Loop over main kernel + for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { + + // Compute output on CPU (performance comparison and verification purposes) + if(rep >= p.n_warmup) + start(&timer, 0, rep - p.n_warmup); + total_count = unique_host(C, A, input_size); + if(rep >= p.n_warmup) + stop(&timer, 0); + + printf("Load input data\n"); + if(rep >= p.n_warmup) + start(&timer, 1, rep - p.n_warmup); + // Input arguments + const unsigned int input_size_dpu = input_size_dpu_round; + unsigned int kernel = 0; + dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel}; + // Copy input arrays + i = 0; + DPU_FOREACH(dpu_set, dpu, i) { + DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments)); + } + DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT)); + DPU_FOREACH(dpu_set, dpu, i) { + DPU_ASSERT(dpu_prepare_xfer(dpu, bufferA + input_size_dpu * i)); + } + DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT)); + if(rep >= p.n_warmup) + stop(&timer, 1); + + printf("Run program on DPU(s) \n"); + // Run DPU kernel + if(rep >= p.n_warmup) { + start(&timer, 2, rep - p.n_warmup); + #if ENERGY + DPU_ASSERT(dpu_probe_start(&probe)); + #endif + } + DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); + if(rep >= p.n_warmup) { + stop(&timer, 2); + #if ENERGY + DPU_ASSERT(dpu_probe_stop(&probe)); + #endif + } + +#if PRINT + { + unsigned int each_dpu = 0; + printf("Display DPU Logs\n"); + DPU_FOREACH (dpu_set, dpu) { + printf("DPU#%d:\n", each_dpu); + DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); + each_dpu++; + } + } +#endif + + printf("Retrieve results\n"); + dpu_results_t results[nr_of_dpus]; + uint32_t* results_scan = malloc(nr_of_dpus * sizeof(uint32_t)); + uint32_t* offset = calloc(nr_of_dpus, sizeof(uint32_t)); + uint32_t* offset_scan = calloc(nr_of_dpus, sizeof(uint32_t)); + i = 0; + accum = 0; + + if(rep >= p.n_warmup) + start(&timer, 3, rep - p.n_warmup); + // PARALLEL RETRIEVE TRANSFER + dpu_results_t* results_retrieve[nr_of_dpus]; + + DPU_FOREACH(dpu_set, dpu, i) { + results_retrieve[i] = (dpu_results_t*)malloc(NR_TASKLETS * sizeof(dpu_results_t)); + DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i])); + } + DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_results_t), DPU_XFER_DEFAULT)); + + DPU_FOREACH(dpu_set, dpu, i) { + // Retrieve tasklet timings + for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { + // First output element of this DPU + if(each_tasklet == 0){ + results[i].first = results_retrieve[i][each_tasklet].first; + } + // Last output element of this DPU and count + if(each_tasklet == NR_TASKLETS - 1){ + results[i].t_count = results_retrieve[i][each_tasklet].t_count; + results[i].last = results_retrieve[i][each_tasklet].last; + } + } + // Check if first(i) == last(i-1) -- offset + if(i != 0){ + if(results[i].first == results[i - 1].last) + offset[i] = 1; + // Sequential scan - offset + offset_scan[i] += offset[i]; + } + // Sequential scan + uint32_t temp = results[i].t_count - offset[i]; + results_scan[i] = accum; + accum += temp; +#if PRINT + printf("i=%d -- %u, %u, %u -- %u\n", i, results_scan[i], accum, temp, offset_scan[i]); +#endif + free(results_retrieve[i]); + } + if(rep >= p.n_warmup) + stop(&timer, 3); + + i = 0; + if(rep >= p.n_warmup) + start(&timer, 4, rep - p.n_warmup); + DPU_FOREACH (dpu_set, dpu) { + // Copy output array + DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferC + results_scan[i] - offset_scan[i], results[i].t_count * sizeof(T))); + + i++; + } + if(rep >= p.n_warmup) + stop(&timer, 4); + + // Free memory + free(results_scan); + free(offset); + free(offset_scan); + + } + + // Print timing results + printf("CPU "); + print(&timer, 0, p.n_reps); + printf("CPU-DPU "); + print(&timer, 1, p.n_reps); + printf("DPU Kernel "); + print(&timer, 2, p.n_reps); + printf("Inter-DPU "); + print(&timer, 3, p.n_reps); + printf("DPU-CPU "); + print(&timer, 4, p.n_reps); + +#if ENERGY + double energy; + DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); + printf("DPU Energy (J): %f\t", energy); +#endif + + // Check output + bool status = true; + if(accum != total_count) status = false; +#if PRINT + printf("accum %u, total_count %u\n", accum, total_count); +#endif + for (i = 0; i < accum; i++) { + if(C[i] != bufferC[i]){ + status = false; +#if PRINT + printf("%d: %lu -- %lu\n", i, C[i], bufferC[i]); +#endif + } + } + if (status) { + printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); + } else { + printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); + } + + // Deallocation + free(A); + free(C); + free(C2); + DPU_ASSERT(dpu_free(dpu_set)); + + return status ? 0 : -1; +} diff --git a/UNI/support/common.h b/UNI/support/common.h new file mode 100755 index 0000000..0bf9853 --- /dev/null +++ b/UNI/support/common.h @@ -0,0 +1,46 @@ +#ifndef _COMMON_H_ +#define _COMMON_H_ + +// Data type +#define T int64_t +#define REGS (BLOCK_SIZE >> 3) // 64 bits + +// Structures used by both the host and the dpu to communicate information +typedef struct { + uint32_t size; + enum kernels { + kernel1 = 0, + nr_kernels = 1, + } kernel; +} dpu_arguments_t; + +typedef struct { + uint32_t t_count; + T first; + T last; +} dpu_results_t; + +// Transfer size between MRAM and WRAM +#ifdef BL +#define BLOCK_SIZE_LOG2 BL +#define BLOCK_SIZE (1 << BLOCK_SIZE_LOG2) +#else +#define BLOCK_SIZE_LOG2 8 +#define BLOCK_SIZE (1 << BLOCK_SIZE_LOG2) +#define BL BLOCK_SIZE_LOG2 +#endif + +typedef struct{unsigned int x; unsigned int y; unsigned int z;} uint3; + +#ifndef ENERGY +#define ENERGY 0 +#endif +#define PRINT 0 + +#define ANSI_COLOR_RED "\x1b[31m" +#define ANSI_COLOR_GREEN "\x1b[32m" +#define ANSI_COLOR_RESET "\x1b[0m" + +#define divceil(n, m) (((n)-1) / (m) + 1) +#define roundup(n, m) ((n / m) * m + m) +#endif diff --git a/UNI/support/params.h b/UNI/support/params.h new file mode 100644 index 0000000..bb86211 --- /dev/null +++ b/UNI/support/params.h @@ -0,0 +1,56 @@ +#ifndef _PARAMS_H_ +#define _PARAMS_H_ + +#include "common.h" + +typedef struct Params { + unsigned int input_size; + int n_warmup; + int n_reps; + int exp; +}Params; + +static void usage() { + fprintf(stderr, + "\nUsage: ./program [options]" + "\n" + "\nGeneral options:" + "\n -h help" + "\n -w <W> # of untimed warmup iterations (default=1)" + "\n -e <E> # of timed repetition iterations (default=3)" + "\n -x <X> Weak (0) or strong (1) scaling (default=0)" + "\n" + "\nBenchmark-specific options:" + "\n -i <I> input size (default=3932160 elements)" + "\n"); +} + +struct Params input_params(int argc, char **argv) { + struct Params p; + p.input_size = 3932160; + p.n_warmup = 1; + p.n_reps = 3; + p.exp = 0; + + int opt; + while((opt = getopt(argc, argv, "hi:w:e:x:")) >= 0) { + switch(opt) { + case 'h': + usage(); + exit(0); + break; + case 'i': p.input_size = atoi(optarg); break; + case 'w': p.n_warmup = atoi(optarg); break; + case 'e': p.n_reps = atoi(optarg); break; + case 'x': p.exp = atoi(optarg); break; + default: + fprintf(stderr, "\nUnrecognized option!\n"); + usage(); + exit(0); + } + } + assert(NR_DPUS > 0 && "Invalid # of dpus!"); + + return p; +} +#endif diff --git a/UNI/support/timer.h b/UNI/support/timer.h new file mode 100755 index 0000000..b53d95f --- /dev/null +++ b/UNI/support/timer.h @@ -0,0 +1,59 @@ +/*
+ * Copyright (c) 2016 University of Cordoba and University of Illinois
+ * All rights reserved.
+ *
+ * Developed by: IMPACT Research Group
+ * University of Cordoba and University of Illinois
+ * http://impact.crhc.illinois.edu/
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * with the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * > Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimers.
+ * > Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimers in the
+ * documentation and/or other materials provided with the distribution.
+ * > Neither the names of IMPACT Research Group, University of Cordoba,
+ * University of Illinois nor the names of its contributors may be used
+ * to endorse or promote products derived from this Software without
+ * specific prior written permission.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
+ * THE SOFTWARE.
+ *
+ */
+
+#include <sys/time.h>
+
+typedef struct Timer{
+
+ struct timeval startTime[7];
+ struct timeval stopTime[7];
+ double time[7];
+
+}Timer;
+
+void start(Timer *timer, int i, int rep) {
+ if(rep == 0) {
+ timer->time[i] = 0.0;
+ }
+ gettimeofday(&timer->startTime[i], NULL);
+}
+
+void stop(Timer *timer, int i) {
+ gettimeofday(&timer->stopTime[i], NULL);
+ timer->time[i] += (timer->stopTime[i].tv_sec - timer->startTime[i].tv_sec) * 1000000.0 +
+ (timer->stopTime[i].tv_usec - timer->startTime[i].tv_usec);
+}
+
+void print(Timer *timer, int i, int REP) { printf("Time (ms): %f\t", timer->time[i] / (1000 * REP)); }
|