1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/**
* app.c
* BFS Host Application Source File
*
*/
#include <dpu.h>
#include <dpu_log.h>
#include <assert.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "mram-management.h"
#include "../support/common.h"
#include "../support/graph.h"
#include "../support/params.h"
#include "../support/timer.h"
#include "../support/utils.h"
#ifndef ENERGY
#define ENERGY 0
#endif
#if ENERGY
#include <dpu_probe.h>
#endif
#define DPU_BINARY "./bin/dpu_code"
// Main of the Host Application
int main(int argc, char** argv) {
// Process parameters
struct Params p = input_params(argc, argv);
// Timer and profiling
Timer timer;
#if ENERGY
struct dpu_probe_t probe;
DPU_ASSERT(dpu_probe_init("energy_probe", &probe));
double tenergy=0;
#endif
// Allocate DPUs and load binary
struct dpu_set_t dpu_set, dpu;
uint32_t numDPUs;
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &numDPUs));
PRINT_INFO(p.verbosity >= 1, "Allocated %d DPU(s)", numDPUs);
// Initialize BFS data structures
PRINT_INFO(p.verbosity >= 1, "Reading graph %s", p.fileName);
struct COOGraph cooGraph = readCOOGraph(p.fileName);
PRINT_INFO(p.verbosity >= 1, " Graph has %d nodes and %d edges", cooGraph.numNodes, cooGraph.numEdges);
struct CSRGraph csrGraph = coo2csr(cooGraph);
uint32_t numNodes = csrGraph.numNodes;
uint32_t* nodePtrs = csrGraph.nodePtrs;
uint32_t* neighborIdxs = csrGraph.neighborIdxs;
uint32_t* nodeLevel = calloc(numNodes, sizeof(uint32_t)); // Node's BFS level (initially all 0 meaning not reachable)
uint64_t* visited = calloc(numNodes/64, sizeof(uint64_t)); // Bit vector with one bit per node
uint64_t* currentFrontier = calloc(numNodes/64, sizeof(uint64_t)); // Bit vector with one bit per node
uint64_t* nextFrontier = calloc(numNodes/64, sizeof(uint64_t)); // Bit vector with one bit per node
setBit(nextFrontier[0], 0); // Initialize frontier to first node
uint32_t level = 1;
// Partition data structure across DPUs
uint32_t numNodesPerDPU = ROUND_UP_TO_MULTIPLE_OF_64((numNodes - 1)/numDPUs + 1);
PRINT_INFO(p.verbosity >= 1, "Assigning %u nodes per DPU", numNodesPerDPU);
struct DPUParams dpuParams[numDPUs];
uint32_t dpuParams_m[numDPUs];
unsigned int dpuIdx = 0;
unsigned int t0ini = 0;
unsigned int t1ini = 0;
unsigned int t2ini = 0;
unsigned int t3ini = 0;
DPU_FOREACH (dpu_set, dpu) {
// Allocate parameters
struct mram_heap_allocator_t allocator;
init_allocator(&allocator);
dpuParams_m[dpuIdx] = mram_heap_alloc(&allocator, sizeof(struct DPUParams));
// Find DPU's nodes
uint32_t dpuStartNodeIdx = dpuIdx*numNodesPerDPU;
uint32_t dpuNumNodes;
if(dpuStartNodeIdx > numNodes) {
dpuNumNodes = 0;
} else if(dpuStartNodeIdx + numNodesPerDPU > numNodes) {
dpuNumNodes = numNodes - dpuStartNodeIdx;
} else {
dpuNumNodes = numNodesPerDPU;
}
dpuParams[dpuIdx].dpuNumNodes = dpuNumNodes;
PRINT_INFO(p.verbosity >= 2, " DPU %u:", dpuIdx);
PRINT_INFO(p.verbosity >= 2, " Receives %u nodes", dpuNumNodes);
// Partition edges and copy data
if(dpuNumNodes > 0) {
// Find DPU's CSR graph partition
uint32_t* dpuNodePtrs_h = &nodePtrs[dpuStartNodeIdx];
uint32_t dpuNodePtrsOffset = dpuNodePtrs_h[0];
uint32_t* dpuNeighborIdxs_h = neighborIdxs + dpuNodePtrsOffset;
uint32_t dpuNumNeighbors = dpuNodePtrs_h[dpuNumNodes] - dpuNodePtrsOffset;
uint32_t* dpuNodeLevel_h = &nodeLevel[dpuStartNodeIdx];
// Allocate MRAM
uint32_t dpuNodePtrs_m = mram_heap_alloc(&allocator, (dpuNumNodes + 1)*sizeof(uint32_t));
uint32_t dpuNeighborIdxs_m = mram_heap_alloc(&allocator, dpuNumNeighbors*sizeof(uint32_t));
uint32_t dpuNodeLevel_m = mram_heap_alloc(&allocator, dpuNumNodes*sizeof(uint32_t));
uint32_t dpuVisited_m = mram_heap_alloc(&allocator, numNodes/64*sizeof(uint64_t));
uint32_t dpuCurrentFrontier_m = mram_heap_alloc(&allocator, dpuNumNodes/64*sizeof(uint64_t));
uint32_t dpuNextFrontier_m = mram_heap_alloc(&allocator, numNodes/64*sizeof(uint64_t));
PRINT_INFO(p.verbosity >= 2, " Total memory allocated is %d bytes", allocator.totalAllocated);
// Set up DPU parameters
dpuParams[dpuIdx].numNodes = numNodes;
dpuParams[dpuIdx].dpuStartNodeIdx = dpuStartNodeIdx;
dpuParams[dpuIdx].dpuNodePtrsOffset = dpuNodePtrsOffset;
dpuParams[dpuIdx].level = level;
dpuParams[dpuIdx].dpuNodePtrs_m = dpuNodePtrs_m;
dpuParams[dpuIdx].dpuNeighborIdxs_m = dpuNeighborIdxs_m;
dpuParams[dpuIdx].dpuNodeLevel_m = dpuNodeLevel_m;
dpuParams[dpuIdx].dpuVisited_m = dpuVisited_m;
dpuParams[dpuIdx].dpuCurrentFrontier_m = dpuCurrentFrontier_m;
dpuParams[dpuIdx].dpuNextFrontier_m = dpuNextFrontier_m;
// Send data to DPU
PRINT_INFO(p.verbosity >= 2, " Copying data to DPU");
startTimer(&timer, 0, t0ini++);
copyToDPU(dpu, (uint8_t*)dpuNodePtrs_h, dpuNodePtrs_m, (dpuNumNodes + 1)*sizeof(uint32_t));
copyToDPU(dpu, (uint8_t*)dpuNeighborIdxs_h, dpuNeighborIdxs_m, dpuNumNeighbors*sizeof(uint32_t));
copyToDPU(dpu, (uint8_t*)dpuNodeLevel_h, dpuNodeLevel_m, dpuNumNodes*sizeof(uint32_t));
copyToDPU(dpu, (uint8_t*)visited, dpuVisited_m, numNodes/64*sizeof(uint64_t));
copyToDPU(dpu, (uint8_t*)nextFrontier, dpuNextFrontier_m, numNodes/64*sizeof(uint64_t));
// NOTE: No need to copy current frontier because it is written before being read
stopTimer(&timer, 0);
//loadTime += getElapsedTime(timer);
}
// Send parameters to DPU
PRINT_INFO(p.verbosity >= 2, " Copying parameters to DPU");
startTimer(&timer, 1, t1ini++);
copyToDPU(dpu, (uint8_t*)&dpuParams[dpuIdx], dpuParams_m[dpuIdx], sizeof(struct DPUParams));
stopTimer(&timer, 1);
//loadTime += getElapsedTime(timer);
++dpuIdx;
}
// Iterate until next frontier is empty
uint32_t nextFrontierEmpty = 0;
while(!nextFrontierEmpty) {
PRINT_INFO(p.verbosity >= 1, "Processing current frontier for level %u", level);
#if ENERGY
DPU_ASSERT(dpu_probe_start(&probe));
#endif
// Run all DPUs
PRINT_INFO(p.verbosity >= 1, " Booting DPUs");
startTimer(&timer, 2, t2ini++);
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
stopTimer(&timer, 2);
//dpuTime += getElapsedTime(timer);
#if ENERGY
DPU_ASSERT(dpu_probe_stop(&probe));
double energy;
DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy));
tenergy += energy;
#endif
// Copy back next frontier from all DPUs and compute their union as the current frontier
startTimer(&timer, 3, t3ini++);
dpuIdx = 0;
DPU_FOREACH (dpu_set, dpu) {
uint32_t dpuNumNodes = dpuParams[dpuIdx].dpuNumNodes;
if(dpuNumNodes > 0) {
if(dpuIdx == 0) {
copyFromDPU(dpu, dpuParams[dpuIdx].dpuNextFrontier_m, (uint8_t*)currentFrontier, numNodes/64*sizeof(uint64_t));
} else {
copyFromDPU(dpu, dpuParams[dpuIdx].dpuNextFrontier_m, (uint8_t*)nextFrontier, numNodes/64*sizeof(uint64_t));
for(uint32_t i = 0; i < numNodes/64; ++i) {
currentFrontier[i] |= nextFrontier[i];
}
}
++dpuIdx;
}
}
// Check if the next frontier is empty, and copy data to DPU if not empty
nextFrontierEmpty = 1;
for(uint32_t i = 0; i < numNodes/64; ++i) {
if(currentFrontier[i]) {
nextFrontierEmpty = 0;
break;
}
}
if(!nextFrontierEmpty) {
++level;
dpuIdx = 0;
DPU_FOREACH (dpu_set, dpu) {
uint32_t dpuNumNodes = dpuParams[dpuIdx].dpuNumNodes;
if(dpuNumNodes > 0) {
// Copy current frontier to all DPUs (place in next frontier and DPU will update visited and copy to current frontier)
copyToDPU(dpu, (uint8_t*)currentFrontier, dpuParams[dpuIdx].dpuNextFrontier_m, numNodes/64*sizeof(uint64_t));
// Copy new level to DPU
dpuParams[dpuIdx].level = level;
copyToDPU(dpu, (uint8_t*)&dpuParams[dpuIdx], dpuParams_m[dpuIdx], sizeof(struct DPUParams));
++dpuIdx;
}
}
}
stopTimer(&timer, 3);
//hostTime += getElapsedTime(timer);
}
// Copy back node levels
PRINT_INFO(p.verbosity >= 1, "Copying back the result");
startTimer(&timer, 4, 0);
dpuIdx = 0;
DPU_FOREACH (dpu_set, dpu) {
uint32_t dpuNumNodes = dpuParams[dpuIdx].dpuNumNodes;
if(dpuNumNodes > 0) {
uint32_t dpuStartNodeIdx = dpuIdx*numNodesPerDPU;
copyFromDPU(dpu, dpuParams[dpuIdx].dpuNodeLevel_m, (uint8_t*)(nodeLevel + dpuStartNodeIdx), dpuNumNodes*sizeof(float));
}
++dpuIdx;
}
stopTimer(&timer, 4);
//retrieveTime += getElapsedTime(timer);
//if(p.verbosity == 0) PRINT("CPU-DPU Time(ms): %f DPU Kernel Time (ms): %f Inter-DPU Time (ms): %f DPU-CPU Time (ms): %f", loadTime*1e3, dpuTime*1e3, hostTime*1e3, retrieveTime*1e3);
// Calculating result on CPU
PRINT_INFO(p.verbosity >= 1, "Calculating result on CPU");
uint32_t* nodeLevelReference = calloc(numNodes, sizeof(uint32_t)); // Node's BFS level (initially all 0 meaning not reachable)
memset(nextFrontier, 0, numNodes/64*sizeof(uint64_t));
setBit(nextFrontier[0], 0); // Initialize frontier to first node
nextFrontierEmpty = 0;
level = 1;
while(!nextFrontierEmpty) {
// Update current frontier and visited list based on the next frontier from the previous iteration
for(uint32_t nodeTileIdx = 0; nodeTileIdx < numNodes/64; ++nodeTileIdx) {
uint64_t nextFrontierTile = nextFrontier[nodeTileIdx];
currentFrontier[nodeTileIdx] = nextFrontierTile;
if(nextFrontierTile) {
visited[nodeTileIdx] |= nextFrontierTile;
nextFrontier[nodeTileIdx] = 0;
for(uint32_t node = nodeTileIdx*64; node < (nodeTileIdx + 1)*64; ++node) {
if(isSet(nextFrontierTile, node%64)) {
nodeLevelReference[node] = level;
}
}
}
}
// Visit neighbors of the current frontier
nextFrontierEmpty = 1;
for(uint32_t nodeTileIdx = 0; nodeTileIdx < numNodes/64; ++nodeTileIdx) {
uint64_t currentFrontierTile = currentFrontier[nodeTileIdx];
if(currentFrontierTile) {
for(uint32_t node = nodeTileIdx*64; node < (nodeTileIdx + 1)*64; ++node) {
if(isSet(currentFrontierTile, node%64)) { // If the node is in the current frontier
// Visit its neighbors
uint32_t nodePtr = nodePtrs[node];
uint32_t nextNodePtr = nodePtrs[node + 1];
for(uint32_t i = nodePtr; i < nextNodePtr; ++i) {
uint32_t neighbor = neighborIdxs[i];
if(!isSet(visited[neighbor/64], neighbor%64)) { // Neighbor not previously visited
// Add neighbor to next frontier
setBit(nextFrontier[neighbor/64], neighbor%64);
nextFrontierEmpty = 0;
}
}
}
}
}
}
++level;
}
// Verify the result
PRINT_INFO(p.verbosity >= 1, "Verifying the result");
int status = 1;
for(uint32_t nodeIdx = 0; nodeIdx < numNodes; ++nodeIdx) {
if(nodeLevel[nodeIdx] != nodeLevelReference[nodeIdx]) {
PRINT_ERROR("Mismatch at node %u (CPU result = level %u, DPU result = level %u)", nodeIdx, nodeLevelReference[nodeIdx], nodeLevel[nodeIdx]);
status = 0;
}
}
if (status) {
printf("[::] BFS NMC | n_dpus=%d n_tasklets=%d e_type=%s n_elements=%d "
"| throughput_pim_MBps=%f throughput_MBps=%f",
numDPUs, NR_TASKLETS, "uint32_t", numNodes,
numNodes * sizeof(uint32_t) / (timer.time[2] + timer.time[3]),
numNodes * sizeof(uint32_t) / (timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4]));
printf(" throughput_pim_MOpps=%f throughput_MOpps=%f",
numNodes / (timer.time[2] + timer.time[3]),
numNodes / (timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4]));
printAll(&timer, 4);
}
// Display DPU Logs
if(p.verbosity >= 2) {
PRINT_INFO(p.verbosity >= 2, "Displaying DPU Logs:");
dpuIdx = 0;
DPU_FOREACH (dpu_set, dpu) {
PRINT("DPU %u:", dpuIdx);
DPU_ASSERT(dpu_log_read(dpu, stdout));
++dpuIdx;
}
}
// Deallocate data structures
freeCOOGraph(cooGraph);
freeCSRGraph(csrGraph);
free(nodeLevel);
free(visited);
free(currentFrontier);
free(nextFrontier);
free(nodeLevelReference);
return 0;
}
|