summaryrefslogtreecommitdiff
path: root/BS/dpu/task.c
blob: 5881dd1fdc8394b95eeff9984d3a974168f1f08c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
* Binary Search with multiple tasklets
*
*/
#include <stdint.h>
#include <stdio.h>
#include <defs.h>
#include <mram.h>
#include <alloc.h>
#include <mram.h>
#include <barrier.h>
#include <perfcounter.h>
#include "common.h"

#define WORD_MASK 0xfffffff8
__host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];

// Search
static DTYPE search(DTYPE *bufferA, DTYPE searching_for, size_t search_size)
{
	DTYPE found = -2;
	if (bufferA[0] <= searching_for) {
		found = -1;
		for (uint32_t i = 0; i < search_size / sizeof(DTYPE); i++) {
			if (bufferA[i] == searching_for) {
				found = i;
				break;
			}
		}
	}
	return found;
}

BARRIER_INIT(my_barrier, NR_TASKLETS);

extern int main_kernel1(void);

int (*kernels[nr_kernels])(void) = { main_kernel1 };

int main(void)
{
	// Kernel
	return kernels[DPU_INPUT_ARGUMENTS.kernel] ();
}

// main_kernel1
int main_kernel1()
{
	unsigned int tasklet_id = me();
#if PRINT
	printf("tasklet_id = %u\n", tasklet_id);
#endif
	if (tasklet_id == 0) {
		mem_reset();	// Reset the heap
	}
	// Barrier
	barrier_wait(&my_barrier);

	DTYPE searching_for, found;
	uint64_t input_size = DPU_INPUT_ARGUMENTS.input_size;

	// Address of the current processing block in MRAM
	uint32_t start_mram_block_addr_A = (uint32_t) DPU_MRAM_HEAP_POINTER;
	uint32_t start_mram_block_addr_aux = start_mram_block_addr_A;
	uint32_t end_mram_block_addr_A =
	    start_mram_block_addr_A + sizeof(DTYPE) * input_size;
	uint32_t current_mram_block_addr_query =
	    end_mram_block_addr_A +
	    tasklet_id * (DPU_INPUT_ARGUMENTS.slice_per_dpu / NR_TASKLETS) *
	    sizeof(DTYPE);

	// Initialize a local cache to store the MRAM block
	DTYPE *cache_A = (DTYPE *) mem_alloc(BLOCK_SIZE);
	DTYPE *cache_aux_A = (DTYPE *) mem_alloc(BLOCK_SIZE);
	DTYPE *cache_aux_B = (DTYPE *) mem_alloc(BLOCK_SIZE);

	dpu_results_t *result = &DPU_RESULTS[tasklet_id];

	for (uint64_t targets = 0;
	     targets < (DPU_INPUT_ARGUMENTS.slice_per_dpu / NR_TASKLETS);
	     targets++) {
		found = -1;

		mram_read((__mram_ptr void const *)
			  current_mram_block_addr_query, &searching_for, 8);
		current_mram_block_addr_query += 8;

		// Initialize input vector boundaries
		start_mram_block_addr_A = (uint32_t) DPU_MRAM_HEAP_POINTER;
		start_mram_block_addr_aux = start_mram_block_addr_A;
		end_mram_block_addr_A =
		    start_mram_block_addr_A + sizeof(DTYPE) * input_size;

		uint32_t current_mram_block_addr_A = start_mram_block_addr_A;

		// Bring first and last values to WRAM
		mram_read((__mram_ptr void const *)current_mram_block_addr_A,
			  cache_aux_A, BLOCK_SIZE);
		mram_read((__mram_ptr void const *)(end_mram_block_addr_A -
						    BLOCK_SIZE * sizeof(DTYPE)),
			  cache_aux_B, BLOCK_SIZE);

		while (1) {
			// Locate the address of the mid mram block
			current_mram_block_addr_A =
			    (start_mram_block_addr_A +
			     end_mram_block_addr_A) / 2;
			current_mram_block_addr_A &= WORD_MASK;

			// Boundary check
			if (current_mram_block_addr_A <
			    (start_mram_block_addr_A + BLOCK_SIZE)) {
				// Search inside (start_mram_block_addr_A, start_mram_block_addr_A + BLOCK_SIZE)
				mram_read((__mram_ptr void const *)
					  start_mram_block_addr_A, cache_A,
					  BLOCK_SIZE);
				found =
				    search(cache_A, searching_for, BLOCK_SIZE);

				if (found > -1) {
					result->found =
					    found + (start_mram_block_addr_A -
						     start_mram_block_addr_aux)
					    / sizeof(DTYPE);
				}
				// Search inside (start_mram_block_addr_A + BLOCK_SIZE, end_mram_block_addr_A)
				else {
					size_t remain_bytes_to_search =
					    end_mram_block_addr_A -
					    (start_mram_block_addr_A +
					     BLOCK_SIZE);
					mram_read((__mram_ptr void const *)
						  start_mram_block_addr_A +
						  BLOCK_SIZE, cache_A,
						  remain_bytes_to_search);
					found =
					    search(cache_A, searching_for,
						   remain_bytes_to_search);

					if (found > -1) {
						result->found =
						    found +
						    (start_mram_block_addr_A +
						     BLOCK_SIZE -
						     start_mram_block_addr_aux)
						    / sizeof(DTYPE);
					} else {
						printf("%lld NOT found\n",
						       searching_for);
					}
				}
				break;
			}
			// Load cache with current MRAM block
			mram_read((__mram_ptr void const *)
				  current_mram_block_addr_A, cache_A,
				  BLOCK_SIZE);

			// Search inside block
			found = search(cache_A, searching_for, BLOCK_SIZE);

			// If found > -1, we found the searching_for query
			if (found > -1) {
				result->found =
				    found + (current_mram_block_addr_A -
					     start_mram_block_addr_aux) /
				    sizeof(DTYPE);
				break;
			}
			// If found == -2, we need to discard right part of the input vector
			if (found == -2) {
				end_mram_block_addr_A =
				    current_mram_block_addr_A;
			}
			// If found == -1, we need to discard left part of the input vector
			else if (found == -1) {
				start_mram_block_addr_A =
				    current_mram_block_addr_A;
			}
		}
	}
	return 0;
}