1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/**
* app.c
* BS Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <time.h>
#if ENERGY
#include <dpu_probe.h>
#endif
#define XSTR(x) STR(x)
#define STR(x) #x
#include "params.h"
#include "timer.h"
// Define the DPU Binary path as DPU_BINARY here
#define DPU_BINARY "./bin/bs_dpu"
// Create input arrays
void create_test_file(DTYPE * input, DTYPE * querys, uint64_t nr_elements, uint64_t nr_querys) {
input[0] = 1;
for (uint64_t i = 1; i < nr_elements; i++) {
input[i] = input[i - 1] + 1;
}
for (uint64_t i = 0; i < nr_querys; i++) {
querys[i] = i;
}
}
// Compute output in the host
int64_t binarySearch(DTYPE * input, DTYPE * querys, DTYPE input_size, uint64_t num_querys)
{
uint64_t result = -1;
DTYPE r;
for(uint64_t q = 0; q < num_querys; q++)
{
DTYPE l = 0;
r = input_size;
while (l <= r) {
DTYPE m = l + (r - l) / 2;
// XXX shouldn't this short-circuit?
// Check if x is present at mid
if (input[m] == querys[q])
result = m;
// If x greater, ignore left half
if (input[m] < querys[q])
l = m + 1;
// If x is smaller, ignore right half
else
r = m - 1;
}
}
return result;
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
uint64_t input_size = INPUT_SIZE;
uint64_t num_querys = p.num_querys;
DTYPE result_host = -1;
DTYPE result_dpu = -1;
// Create the timer
Timer timer;
// Allocate DPUs and load binary
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
#if ENERGY
struct dpu_probe_t probe;
DPU_ASSERT(dpu_probe_init("energy_probe", &probe));
#endif
// Query number adjustement for proper partitioning
if(num_querys % (nr_of_dpus * NR_TASKLETS))
num_querys = num_querys + (nr_of_dpus * NR_TASKLETS - num_querys % (nr_of_dpus * NR_TASKLETS));
assert(num_querys % (nr_of_dpus * NR_TASKLETS) == 0 && "Input dimension"); // Allocate input and querys vectors
DTYPE * input = malloc((input_size) * sizeof(DTYPE));
DTYPE * querys = malloc((num_querys) * sizeof(DTYPE));
// Create an input file with arbitrary data
create_test_file(input, querys, input_size, num_querys);
// Create kernel arguments
uint64_t slice_per_dpu = num_querys / nr_of_dpus;
dpu_arguments_t input_arguments = {input_size, slice_per_dpu, 0};
for (unsigned int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
// Perform input transfers
uint64_t i = 0;
// Compute host solution
start(&timer, 0, 0);
result_host = binarySearch(input, querys, input_size - 1, num_querys);
stop(&timer, 0);
if (rep >= p.n_warmup) {
start(&timer, 1, 0);
}
DPU_FOREACH(dpu_set, dpu, i)
{
DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT));
i = 0;
DPU_FOREACH(dpu_set, dpu, i)
{
DPU_ASSERT(dpu_prepare_xfer(dpu, input));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size * sizeof(DTYPE), DPU_XFER_DEFAULT));
i = 0;
DPU_FOREACH(dpu_set, dpu, i)
{
DPU_ASSERT(dpu_prepare_xfer(dpu, querys + slice_per_dpu * i));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size * sizeof(DTYPE), slice_per_dpu * sizeof(DTYPE), DPU_XFER_DEFAULT));
if (rep >= p.n_warmup) {
stop(&timer, 1);
}
// Run kernel on DPUs
if (rep >= p.n_warmup)
{
start(&timer, 2, 0);
#if ENERGY
DPU_ASSERT(dpu_probe_start(&probe));
#endif
}
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if (rep >= p.n_warmup)
{
stop(&timer, 2);
#if ENERGY
DPU_ASSERT(dpu_probe_stop(&probe));
#endif
}
// Print logs if required
#if PRINT
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH(dpu_set, dpu)
{
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
#endif
// Retrieve results
if (rep >= p.n_warmup) {
start(&timer, 3, 0);
}
dpu_results_t* results_retrieve[nr_of_dpus];
i = 0;
DPU_FOREACH(dpu_set, dpu, i)
{
results_retrieve[i] = (dpu_results_t*)malloc(NR_TASKLETS * sizeof(dpu_results_t));
DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i]));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_results_t), DPU_XFER_DEFAULT));
DPU_FOREACH(dpu_set, dpu, i)
{
for(unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++)
{
if(results_retrieve[i][each_tasklet].found > result_dpu)
{
result_dpu = results_retrieve[i][each_tasklet].found;
}
}
free(results_retrieve[i]);
}
if(rep >= p.n_warmup) {
stop(&timer, 3);
}
int status = (result_dpu == result_host);
if (status) {
printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] results are equal\n");
if (rep >= p.n_warmup) {
printf("[::] BS NMC | n_dpus=%d n_tasklets=%d e_type=%s n_elements=%lu "
"| throughput_cpu_MBps=%f throughput_pim_MBps=%f throughput_MBps=%f",
nr_of_dpus, NR_TASKLETS, XSTR(DTYPE), input_size,
num_querys * sizeof(DTYPE) / timer.time[0],
num_querys * sizeof(DTYPE) / timer.time[2],
num_querys * sizeof(DTYPE) / (timer.time[1] + timer.time[2] + timer.time[3]));
printf(" throughput_cpu_MOpps=%f throughput_pim_MOpps=%f throughput_MOpps=%f",
num_querys / timer.time[0],
num_querys / timer.time[2],
num_querys / (timer.time[1] + timer.time[2] + timer.time[3]));
printall(&timer, 3);
}
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] results differ!\n");
}
}
// Print timing results
/*
printf("CPU Version Time (ms): ");
print(&timer, 0, p.n_reps);
printf("CPU-DPU Time (ms): ");
print(&timer, 1, p.n_reps);
printf("DPU Kernel Time (ms): ");
print(&timer, 2, p.n_reps);
printf("DPU-CPU Time (ms): ");
print(&timer, 3, p.n_reps);
*/
#if ENERGY
double energy;
DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy));
printf("DPU Energy (J): %f\t", energy * num_iterations);
#endif
free(input);
DPU_ASSERT(dpu_free(dpu_set));
return 0;
}
|