1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
/**
* app.c
* BS Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <time.h>
#if ENERGY
#include <dpu_probe.h>
#endif
#include <dpu_management.h>
#include <dpu_target_macros.h>
#define XSTR(x) STR(x)
#define STR(x) #x
#include "params.h"
#include "timer.h"
// Define the DPU Binary path as DPU_BINARY here
#define DPU_BINARY "./bin/bs_dpu"
// Create input arrays
void create_test_file(DTYPE * input, DTYPE * querys, uint64_t nr_elements, uint64_t nr_querys) {
srand(time(NULL));
input[0] = 1;
for (uint64_t i = 1; i < nr_elements; i++) {
input[i] = input[i - 1] + (rand() % 10) + 1;
}
for (uint64_t i = 0; i < nr_querys; i++) {
querys[i] = input[rand() % nr_elements];
}
}
// Compute output in the host
int64_t binarySearch(DTYPE * input, DTYPE * querys, DTYPE input_size, uint64_t num_querys)
{
uint64_t result = -1;
DTYPE r;
for(uint64_t q = 0; q < num_querys; q++)
{
DTYPE l = 0;
r = input_size;
while (l <= r) {
DTYPE m = l + (r - l) / 2;
// XXX shouldn't this short-circuit?
// Check if x is present at mid
if (input[m] == querys[q])
result = m;
// If x greater, ignore left half
if (input[m] < querys[q])
l = m + 1;
// If x is smaller, ignore right half
else
r = m - 1;
}
}
return result;
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
uint32_t nr_of_ranks;
uint64_t input_size = INPUT_SIZE;
uint64_t num_querys = p.num_querys;
DTYPE result_host = -1;
DTYPE result_dpu = -1;
// Timer declaration
Timer timer;
int numa_node_rank = -2;
// Allocate DPUs and load binary
#if !WITH_ALLOC_OVERHEAD
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
timer.time[0] = 0; // alloc
#endif
#if !WITH_LOAD_OVERHEAD
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
assert(nr_of_dpus == NR_DPUS);
timer.time[1] = 0; // load
#endif
#if !WITH_FREE_OVERHEAD
timer.time[6] = 0; // free
#endif
#if ENERGY
struct dpu_probe_t probe;
DPU_ASSERT(dpu_probe_init("energy_probe", &probe));
#endif
// Query number adjustement for proper partitioning
if(num_querys % (NR_DPUS * NR_TASKLETS))
num_querys = num_querys + (NR_DPUS * NR_TASKLETS - num_querys % (NR_DPUS * NR_TASKLETS));
assert(num_querys % (NR_DPUS * NR_TASKLETS) == 0 && "Input dimension"); // Allocate input and querys vectors
DTYPE * input = malloc((input_size) * sizeof(DTYPE));
DTYPE * querys = malloc((num_querys) * sizeof(DTYPE));
// Create an input file with arbitrary data
create_test_file(input, querys, input_size, num_querys);
// Create kernel arguments
uint64_t slice_per_dpu = num_querys / NR_DPUS;
dpu_arguments_t input_arguments = {input_size, slice_per_dpu, 0};
for (unsigned int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
// Perform input transfers
uint64_t i = 0;
#if WITH_ALLOC_OVERHEAD
if(rep >= p.n_warmup) {
start(&timer, 0, 0);
}
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
if(rep >= p.n_warmup) {
stop(&timer, 0);
}
#endif
#if WITH_DPUINFO
printf("DPUs:");
DPU_FOREACH (dpu_set, dpu) {
int rank = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK;
int slice = dpu_get_slice_id(dpu_from_set(dpu));
int member = dpu_get_member_id(dpu_from_set(dpu));
printf(" %d(%d.%d)", rank, slice, member);
}
printf("\n");
#endif
#if WITH_LOAD_OVERHEAD
if(rep >= p.n_warmup) {
start(&timer, 1, 0);
}
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
if(rep >= p.n_warmup) {
stop(&timer, 1);
}
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
assert(nr_of_dpus == NR_DPUS);
#endif
// int prev_rank_id = -1;
int rank_id = -1;
DPU_FOREACH (dpu_set, dpu) {
rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK;
if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)))) {
numa_node_rank = -1;
} else {
numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)));
}
/*
if (rank_id != prev_rank_id) {
printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank);
prev_rank_id = rank_id;
}
*/
}
// Compute host solution
if(rep >= p.n_warmup) {
start(&timer, 2, 0);
}
result_host = binarySearch(input, querys, input_size - 1, num_querys);
if(rep >= p.n_warmup) {
stop(&timer, 2);
}
if (rep >= p.n_warmup) {
start(&timer, 3, 0);
}
DPU_FOREACH(dpu_set, dpu, i)
{
DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT));
i = 0;
DPU_FOREACH(dpu_set, dpu, i)
{
DPU_ASSERT(dpu_prepare_xfer(dpu, input));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size * sizeof(DTYPE), DPU_XFER_DEFAULT));
i = 0;
DPU_FOREACH(dpu_set, dpu, i)
{
DPU_ASSERT(dpu_prepare_xfer(dpu, querys + slice_per_dpu * i));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size * sizeof(DTYPE), slice_per_dpu * sizeof(DTYPE), DPU_XFER_DEFAULT));
if (rep >= p.n_warmup) {
stop(&timer, 3);
}
// Run kernel on DPUs
if (rep >= p.n_warmup)
{
start(&timer, 4, 0);
#if ENERGY
DPU_ASSERT(dpu_probe_start(&probe));
#endif
}
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if (rep >= p.n_warmup)
{
stop(&timer, 4);
#if ENERGY
DPU_ASSERT(dpu_probe_stop(&probe));
#endif
}
// Print logs if required
#if PRINT
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH(dpu_set, dpu)
{
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
#endif
// Retrieve results
dpu_results_t* results_retrieve[NR_DPUS];
if (rep >= p.n_warmup) {
start(&timer, 5, 0);
}
i = 0;
DPU_FOREACH(dpu_set, dpu, i)
{
results_retrieve[i] = (dpu_results_t*)malloc(NR_TASKLETS * sizeof(dpu_results_t));
DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i]));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_results_t), DPU_XFER_DEFAULT));
DPU_FOREACH(dpu_set, dpu, i)
{
for(unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++)
{
if(results_retrieve[i][each_tasklet].found > result_dpu)
{
result_dpu = results_retrieve[i][each_tasklet].found;
}
}
free(results_retrieve[i]);
}
if(rep >= p.n_warmup) {
stop(&timer, 5);
}
#if WITH_ALLOC_OVERHEAD
#if WITH_FREE_OVERHEAD
if(rep >= p.n_warmup) {
start(&timer, 6, 0);
}
#endif
DPU_ASSERT(dpu_free(dpu_set));
#if WITH_FREE_OVERHEAD
if(rep >= p.n_warmup) {
stop(&timer, 6);
}
#endif
#endif
int status = (result_dpu == result_host);
if (status) {
printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] results are equal\n");
if (rep >= p.n_warmup) {
printf("[::] BS-UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%lu",
NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(DTYPE), BLOCK_SIZE, input_size);
printf(" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d numa_node_rank=%d ",
WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD, numa_node_rank);
printf("| latency_alloc_us=%f latency_load_us=%f latency_cpu_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f",
timer.time[0],
timer.time[1],
timer.time[2],
timer.time[3],
timer.time[4],
timer.time[5],
timer.time[6]);
printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f",
num_querys * sizeof(DTYPE) / timer.time[2],
num_querys * sizeof(DTYPE) / (timer.time[4]),
num_querys * sizeof(DTYPE) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]));
printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f",
num_querys * sizeof(DTYPE) / (timer.time[3] + timer.time[4] + timer.time[5]),
num_querys * sizeof(DTYPE) / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]),
num_querys * sizeof(DTYPE) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]));
printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f",
num_querys / timer.time[2],
num_querys / (timer.time[4]),
num_querys / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]));
printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n",
num_querys / (timer.time[3] + timer.time[4] + timer.time[5]),
num_querys / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]),
num_querys / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]));
}
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] results differ!\n");
}
}
// Print timing results
/*
printf("CPU Version Time (ms): ");
print(&timer, 0, p.n_reps);
printf("CPU-DPU Time (ms): ");
print(&timer, 1, p.n_reps);
printf("DPU Kernel Time (ms): ");
print(&timer, 2, p.n_reps);
printf("DPU-CPU Time (ms): ");
print(&timer, 3, p.n_reps);
*/
#if ENERGY
double energy;
DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy));
printf("DPU Energy (J): %f\t", energy * num_iterations);
#endif
free(input);
#if !WITH_ALLOC_OVERHEAD
DPU_ASSERT(dpu_free(dpu_set));
#endif
return 0;
}
|