summaryrefslogtreecommitdiff
path: root/COUNT/dpu/task.c
blob: b2ed79bddb06f95e2cb7aab4fe57f206a63be201 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*
* Count with multiple tasklets
*
*/
#include <stdint.h>
#include <stdio.h>
#include <defs.h>
#include <mram.h>
#include <alloc.h>
#include <perfcounter.h>
#include <handshake.h>
#include <barrier.h>

#include "../support/common.h"

__host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];

// Array for communication between adjacent tasklets
uint32_t message[NR_TASKLETS];
uint32_t message_partial_count;

// COUNT in each tasklet
static unsigned int count(T *input){
    unsigned int cnt = 0;
    #pragma unroll
    for(unsigned int j = 0; j < REGS; j++) {
        if(!pred(input[j])) {
            cnt++;
        }
    }
    return cnt;
}

// Handshake with adjacent tasklets
static unsigned int handshake_sync(unsigned int l_count, unsigned int tasklet_id){
    unsigned int p_count;
    // Wait and read message
    if(tasklet_id != 0){
        handshake_wait_for(tasklet_id - 1);
        p_count = message[tasklet_id];
    } else {
        p_count = 0;
    }
    // Write message and notify
    if(tasklet_id < NR_TASKLETS - 1){
        message[tasklet_id + 1] = p_count + l_count;
        handshake_notify();
    }
    return p_count;
}

// Barrier
BARRIER_INIT(my_barrier, NR_TASKLETS);

extern int main_kernel1(void);

int (*kernels[nr_kernels])(void) = {main_kernel1};

int main(void) { 
    // Kernel
    return kernels[DPU_INPUT_ARGUMENTS.kernel](); 
}

// main_kernel1
int main_kernel1() {
    unsigned int tasklet_id = me();
#if PRINT
    printf("tasklet_id = %u\n", tasklet_id);
#endif
    if (tasklet_id == 0){ // Initialize once the cycle counter
        mem_reset(); // Reset the heap
    }
    // Barrier
    barrier_wait(&my_barrier);

    dpu_results_t *result = &DPU_RESULTS[tasklet_id];

    uint32_t input_size_dpu_bytes = DPU_INPUT_ARGUMENTS.size;

    // Address of the current processing block in MRAM
    uint32_t base_tasklet = tasklet_id << BLOCK_SIZE_LOG2;
    uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER;

    // Initialize a local cache to store the MRAM block
    T *cache_A = (T *) mem_alloc(BLOCK_SIZE);

    // Initialize shared variable
    if(tasklet_id == NR_TASKLETS - 1)
        message_partial_count = 0;
    // Barrier
    barrier_wait(&my_barrier);

    for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){

        // Load cache with current MRAM block
        mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);

        // COUNT in each tasklet
        uint32_t l_count = count(cache_A);

        // Sync with adjacent tasklets
        uint32_t p_count = handshake_sync(l_count, tasklet_id);

        // Barrier
        barrier_wait(&my_barrier);

        // Total count in this DPU
        if(tasklet_id == NR_TASKLETS - 1){
            result->t_count = message_partial_count + p_count + l_count;
            message_partial_count = result->t_count;
        }

    }

    return 0;
}