1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#include <stdlib.h>
#include <stdio.h>
#include "../../support/timer.h"
#if NUMA
#include <numaif.h>
#include <numa.h>
#ifndef T
#define T double
#endif
struct bitmask* bitmask_in;
struct bitmask* bitmask_out;
void* mp_pages[1];
int mp_status[1];
int mp_nodes[1];
int numa_node_in = -1;
int numa_node_out = -1;
int numa_node_cpu = -1;
#endif
#define XSTR(x) STR(x)
#define STR(x) #x
#include "gemv_utils.h"
int main(int argc, char *argv[])
{
(void) argc;
/* // upstream config:
const size_t rows = 20480;
const size_t cols = 8192;
*/
// DPU config: 163840 -n 4096
const size_t rows = 163840;
const size_t cols = 4096;
T **A, *b, *x;
#if NUMA
bitmask_in = numa_parse_nodestring(argv[1]);
bitmask_out = numa_parse_nodestring(argv[2]);
numa_node_cpu = atoi(argv[3]);
#else
(void) argv;
#endif
#if NUMA
if (bitmask_out) {
numa_set_membind(bitmask_out);
numa_free_nodemask(bitmask_out);
}
b = (T*) numa_alloc(sizeof(T)*rows);
#else
b = (T*) malloc(sizeof(T)*rows);
#endif
#if NUMA
if (bitmask_in) {
numa_set_membind(bitmask_in);
// no free yet, re-used in allocate_dense
}
x = (T*) numa_alloc(sizeof(T)*cols);
#else
x = (T*) malloc(sizeof(T)*cols);
#endif
allocate_dense(rows, cols, &A);
make_hilbert_mat(rows,cols, &A);
#if NUMA
struct bitmask *bitmask_all = numa_allocate_nodemask();
numa_bitmask_setall(bitmask_all);
numa_set_membind(bitmask_all);
numa_free_nodemask(bitmask_all);
#endif
#if NUMA
mp_pages[0] = A;
if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
perror("move_pages(A)");
}
else if (mp_status[0] < 0) {
printf("move_pages(A) error: %d", mp_status[0]);
}
else {
numa_node_in = mp_status[0];
}
mp_pages[0] = b;
if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
perror("move_pages(b)");
}
else if (mp_status[0] < 0) {
printf("move_pages(b) error: %d", mp_status[0]);
}
else {
numa_node_out = mp_status[0];
}
if (numa_node_cpu != -1) {
if (numa_run_on_node(numa_node_cpu) == -1) {
perror("numa_run_on_node");
numa_node_cpu = -1;
}
}
#endif
Timer timer;
for (int i = 0; i < 100; i++) {
#pragma omp parallel
{
#pragma omp for
for (size_t i = 0; i < cols; i++) {
x[i] = (T) i+1 ;
}
#pragma omp for
for (size_t i = 0; i < rows; i++) {
b[i] = (T) 0;
}
}
unsigned int nr_threads = 0;
#pragma omp parallel
#pragma omp atomic
nr_threads++;
start(&timer, 0, 0);
gemv(A, x, rows, cols, &b);
stop(&timer, 0);
printf("[::] GEMV-CPU | n_threads=%d e_type=%s n_elements=%ld"
#if NUMA
" numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d"
#endif
" | throughput_MBps=%f",
nr_threads, STR(T), rows * cols,
#if NUMA
numa_node_in, numa_node_out, numa_node_cpu, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out),
#endif
rows * cols * sizeof(T) / timer.time[0]);
printf(" throughput_MOpps=%f",
rows * cols / timer.time[0]);
printall(&timer, 0);
}
#if 0
print_vec(x, rows);
print_mat(A, rows, cols);
print_vec(b, rows);
#endif
#if TYPE_double || TYPE_float
printf("sum(x) = %f, sum(Ax) = %f\n", sum_vec(x,cols), sum_vec(b,rows));
#else
printf("sum(x) = %d, sum(Ax) = %d\n", sum_vec(x,cols), sum_vec(b,rows));
#endif
#if NUMA
numa_free(b, sizeof(T)*rows);
numa_free(x, sizeof(T)*cols);
numa_free(*A, sizeof(T)*rows*cols);
numa_free(A, sizeof(void*)*rows);
#else
free(b);
free(x);
free(*A);
free(A);
#endif
return 0;
}
void gemv(T** A, T* x, size_t rows, size_t cols, T** b) {
#pragma omp parallel for
for (size_t i = 0; i < rows; i ++ )
for (size_t j = 0; j < cols; j ++ ) {
(*b)[i] = (*b)[i] + A[i][j]*x[j];
}
}
void make_hilbert_mat(size_t rows, size_t cols, T*** A) {
#pragma omp parallel for
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
#if TYPE_double || TYPE_float
(*A)[i][j] = 1.0/( (T) i + (T) j + 1.0);
#else
(*A)[i][j] = (T)(((i+j)%10));
#endif
}
}
}
T sum_vec(T* vec, size_t rows) {
T sum = 0;
#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < rows; i++) sum = sum + vec[i];
return sum;
}
|