1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
/**
* app.c
* GEMV Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#if ENERGY
#include <dpu_probe.h>
#endif
#include <dpu_management.h>
#include <dpu_target_macros.h>
#define XSTR(x) STR(x)
#define STR(x) #x
#include "../support/common.h"
#include "../support/timer.h"
#include "../support/params.h"
// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/gemv_dpu"
#endif
static T* A;
static T* B;
static T* C;
static T* C_dpu;
// Create input arrays
static void init_data(T* A, T* B, unsigned int m_size, unsigned int n_size) {
srand(0);
for (unsigned int i = 0; i < m_size * n_size; i++)
{
A[i] = (unsigned int) (rand()%50);
}
for (unsigned int i = 0; i < n_size; i++)
{
B[i] = (unsigned int) (rand()%50);
}
}
// Compute output in the host
static void gemv_host(T* C, T* A, T* B, unsigned int m_size, unsigned int n_size) {
for (unsigned int i = 0; i < m_size; i++)
{
C[i] = 0;
}
for (unsigned int m = 0; m < m_size; m++) {
for (unsigned int n = 0; n < n_size; n++)
{
C[m] += A[m * n_size + n] * B[n];
}
}
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
uint32_t nr_of_ranks;
// Timer
Timer timer;
int numa_node_rank = -2;
// Allocate DPUs and load binary
#if !WITH_ALLOC_OVERHEAD
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
timer.time[0] = 0; // alloc
#endif
#if !WITH_LOAD_OVERHEAD
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
assert(nr_of_dpus == NR_DPUS);
timer.time[1] = 0; // load
#endif
#if !WITH_FREE_OVERHEAD
timer.time[6] = 0; // free
#endif
#if ENERGY
struct dpu_probe_t probe;
DPU_ASSERT(dpu_probe_init("energy_probe", &probe));
#endif
unsigned int i;
unsigned int m_size = p.m_size;
unsigned int n_size = p.n_size;
// Initialize help data
dpu_info = (struct dpu_info_t *) malloc(NR_DPUS * sizeof(struct dpu_info_t));
dpu_arguments_t *input_args = (dpu_arguments_t *) malloc(NR_DPUS * sizeof(dpu_arguments_t));
uint32_t max_rows_per_dpu = 0;
uint32_t n_size_pad = n_size;
if(n_size % 2 == 1)
{
n_size_pad++;
}
for (i = 0; i < NR_DPUS; i++) {
uint32_t rows_per_dpu;
uint32_t prev_rows_dpu = 0;
uint32_t chunks = m_size / NR_DPUS;
rows_per_dpu = chunks;
uint32_t rest_rows = m_size % NR_DPUS;
if (i < rest_rows)
rows_per_dpu++;
if (rest_rows > 0) {
if (i >= rest_rows)
prev_rows_dpu = rest_rows * (chunks + 1) + (i - rest_rows) * chunks;
else
prev_rows_dpu = i * (chunks + 1);
} else {
prev_rows_dpu = i * chunks;
}
// Keep max rows for parallel transfers
uint32_t rows_per_dpu_pad = rows_per_dpu;
if (rows_per_dpu_pad % 2 == 1) // 4-byte elements
rows_per_dpu_pad++;
if (rows_per_dpu_pad > max_rows_per_dpu)
max_rows_per_dpu = rows_per_dpu_pad;
dpu_info[i].rows_per_dpu = rows_per_dpu;
dpu_info[i].rows_per_dpu_pad = rows_per_dpu_pad;
dpu_info[i].prev_rows_dpu = prev_rows_dpu;
// Copy input arguments to DPU
input_args[i].n_size = n_size;
input_args[i].n_size_pad = n_size_pad;
input_args[i].nr_rows = rows_per_dpu;
}
A = malloc(max_rows_per_dpu * NR_DPUS * n_size_pad * sizeof(T));
B = malloc(n_size_pad * sizeof(T));
C = malloc(max_rows_per_dpu * NR_DPUS * sizeof(T));
C_dpu = malloc(max_rows_per_dpu * NR_DPUS * sizeof(T));
// Initialize data with arbitrary data
init_data(A, B, m_size, n_size);
// Compute output on CPU (performance comparison and verification purposes)
for (unsigned int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
#if WITH_ALLOC_OVERHEAD
if(rep >= p.n_warmup) {
start(&timer, 0, 0);
}
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
if(rep >= p.n_warmup) {
stop(&timer, 0);
}
#endif
#if WITH_LOAD_OVERHEAD
if(rep >= p.n_warmup) {
start(&timer, 1, 0);
}
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
if(rep >= p.n_warmup) {
stop(&timer, 1);
}
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
assert(nr_of_dpus == NR_DPUS);
#endif
// int prev_rank_id = -1;
int rank_id = -1;
DPU_FOREACH (dpu_set, dpu) {
rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK;
if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)))) {
numa_node_rank = -1;
} else {
numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)));
}
/*
if (rank_id != prev_rank_id) {
printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank);
prev_rank_id = rank_id;
}
*/
}
if(rep >= p.n_warmup) {
start(&timer, 2, 0);
}
gemv_host(C, A, B, m_size, n_size);
if(rep >= p.n_warmup) {
stop(&timer, 2);
}
if (rep >= p.n_warmup) {
start(&timer, 3, 0);
}
// Input arguments
i = 0;
DPU_FOREACH(dpu_set, dpu, i) {
// Copy input arguments to DPU
input_args[i].max_rows = max_rows_per_dpu;
DPU_ASSERT(dpu_prepare_xfer(dpu, input_args + i));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(dpu_arguments_t), DPU_XFER_DEFAULT));
// Copy input array and vector
i = 0;
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, A + dpu_info[i].prev_rows_dpu * n_size));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, max_rows_per_dpu * n_size_pad * sizeof(T), DPU_XFER_DEFAULT));
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, B));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, max_rows_per_dpu * n_size_pad * sizeof(T) , n_size_pad * sizeof(T), DPU_XFER_DEFAULT));
if (rep >= p.n_warmup) {
stop(&timer, 3);
}
// Run kernel on DPUs
if (rep >= p.n_warmup) {
start(&timer, 4, 0);
#if ENERGY
DPU_ASSERT(dpu_probe_start(&probe));
#endif
}
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if (rep >= p.n_warmup) {
stop(&timer, 4);
#if ENERGY
DPU_ASSERT(dpu_probe_stop(&probe));
#endif
}
#if PRINT
// Display DPU Logs
DPU_FOREACH(dpu_set, dpu) {
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
}
#endif
// Retrieve results
if (rep >= p.n_warmup)
start(&timer, 5, 0);
i = 0;
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, C_dpu + i * max_rows_per_dpu));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, max_rows_per_dpu * n_size_pad * sizeof(T) + n_size_pad * sizeof(T), max_rows_per_dpu * sizeof(T), DPU_XFER_DEFAULT));
if(rep >= p.n_warmup) {
stop(&timer, 5);
}
#if WITH_ALLOC_OVERHEAD
#if WITH_FREE_OVERHEAD
if(rep >= p.n_warmup) {
start(&timer, 6, 0);
}
#endif
DPU_ASSERT(dpu_free(dpu_set));
#if WITH_FREE_OVERHEAD
if(rep >= p.n_warmup) {
stop(&timer, 6);
}
#endif
#endif
// Check output
bool status = true;
unsigned int n,j;
i = 0;
for (n = 0; n < NR_DPUS; n++) {
for (j = 0; j < dpu_info[n].rows_per_dpu; j++) {
if(C[i] != C_dpu[n * max_rows_per_dpu + j]) {
status = false;
#if PRINT
// printf("%d: %d -- %d\n", i, C[i], C_dpu[n * max_rows_per_dpu + j]);
#endif
}
i++;
}
}
if (status) {
printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n");
if (rep >= p.n_warmup) {
printf("[::] GEMV-UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%d",
NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(T), BLOCK_SIZE, n_size * m_size);
printf(" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d numa_node_rank=%d ",
WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD, numa_node_rank);
printf("| latency_alloc_us=%f latency_load_us=%f latency_cpu_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f",
timer.time[0],
timer.time[1],
timer.time[2],
timer.time[3],
timer.time[4],
timer.time[5],
timer.time[6]);
printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f",
n_size * m_size * sizeof(T) / timer.time[2],
n_size * m_size * sizeof(T) / (timer.time[4]),
n_size * m_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]));
printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f",
n_size * m_size * sizeof(T) / (timer.time[3] + timer.time[4] + timer.time[5]),
n_size * m_size * sizeof(T) / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]),
n_size * m_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]));
printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f",
n_size * m_size / timer.time[2],
n_size * m_size / (timer.time[4]),
n_size * m_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]));
printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n",
n_size * m_size / (timer.time[3] + timer.time[4] + timer.time[5]),
n_size * m_size / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]),
n_size * m_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]));
}
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n");
}
}
#if ENERGY
double acc_energy, avg_energy, acc_time, avg_time;
DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_ACCUMULATE, &acc_energy));
DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &avg_energy));
DPU_ASSERT(dpu_probe_get(&probe, DPU_TIME, DPU_ACCUMULATE, &acc_time));
DPU_ASSERT(dpu_probe_get(&probe, DPU_TIME, DPU_AVERAGE, &avg_time));
#endif
// Print timing results
/*
printf("CPU Version Time (ms): ");
print(&timer, 0, 1);
printf("CPU-DPU Time (ms): ");
print(&timer, 1, p.n_reps);
printf("DPU Kernel Time (ms): ");
print(&timer, 2, p.n_reps);
printf("DPU-CPU Time (ms): ");
print(&timer, 3, p.n_reps);
*/
#if ENERGY
printf("Energy (J): %f J\t", avg_energy);
#endif
// Deallocation
free(A);
free(B);
free(C);
free(C_dpu);
#if !WITH_ALLOC_OVERHEAD
DPU_ASSERT(dpu_free(dpu_set));
#endif
#if ENERGY
DPU_ASSERT(dpu_probe_deinit(&probe));
#endif
return 0;
}
|