1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/**
* @file app.c
* @brief Template for a Host Application Source File.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <stdint.h>
#include "../../support/common.h"
#if WITH_BENCHMARK
#include "../../support/timer.h"
#else
#define start(...)
#define stop(...)
#endif
#if NUMA
#include <numaif.h>
#include <numa.h>
void* mp_pages[1];
int mp_status[1];
int mp_nodes[1];
int numa_node_data = -1;
int numa_node_cpu = -1;
#endif
#define XSTR(x) STR(x)
#define STR(x) #x
// weights
T** A;
// input/output
T* B;
// intermediate
T* C;
// Create input arrays
static void init_data(T** A, unsigned int m_size, unsigned int n_size){
for (unsigned int l = 0; l < NUM_LAYERS; l++) {
for (unsigned int i = 0; i < m_size * n_size; i++){
if(i % 100 < 98){
A[l][i] = 0;
}else{
A[l][i] = (l+i) % 2;
}
}
}
}
static void init_B(T* B, unsigned int n_size){
for (unsigned int i = 0; i < n_size; i++){
if(i % 50 < 48){
B[i] = 0;
}
else{
B[i] = i % 2;
}
}
}
// Compute output in the host
static void mlp_host(T* C, T** A, T* B, unsigned int m_size, unsigned int n_size) {
for (unsigned int nl = 0; nl < NUM_LAYERS; nl++){
for (unsigned int m = 0; m < m_size; m++){
C[m] = 0;
}
#pragma omp parallel for
for (unsigned int m = 0; m < m_size; m++){
for (unsigned int n = 0; n < n_size; n++){
C[m] += A[nl][m * n_size + n] * B[n];
}
C[m] = max(0, C[m]);
}
for (unsigned int n = 0; n < n_size; n++){
B[n] = C[n];
}
}
}
static uint64_t mlp_host_sum(uint64_t n_size) {
uint64_t sum = 0;
for (uint64_t m = 0; m < n_size; m++){
sum += B[m];
}
return sum;
}
// Params ---------------------------------------------------------------------
typedef struct Params {
int input_size_n;
int input_size_m;
int n_reps;
#if NUMA
struct bitmask* bitmask;
int numa_node_cpu;
#endif
}Params;
void usage() {
fprintf(stderr,
"\nUsage: ./program [options]"
"\n");
}
struct Params input_params(int argc, char **argv) {
struct Params p;
p.input_size_n = 8192;
p.input_size_m = 20480;
p.n_reps = 100;
#if NUMA
p.bitmask = NULL;
p.numa_node_cpu = -1;
#endif
int opt;
while((opt = getopt(argc, argv, "e:n:m:A:C:")) >= 0) {
switch(opt) {
case 'h':
usage();
exit(0);
break;
case 'e': p.n_reps = atoi(optarg); break;
case 'n': p.input_size_n = atoi(optarg); break;
case 'm': p.input_size_m = atoi(optarg); break;
#if NUMA
case 'A': p.bitmask = numa_parse_nodestring(optarg); break;
case 'C': p.numa_node_cpu = atoi(optarg); break;
#endif
default:
fprintf(stderr, "\nUnrecognized option!\n");
usage();
exit(0);
}
}
return p;
}
/**
* @brief Main of the Host Application.
*/
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
uint64_t n_size = p.input_size_n;
uint64_t m_size = p.input_size_m;
#if WITH_BENCHMARK
Timer timer;
#endif
#if NUMA
if (p.bitmask) {
numa_set_membind(p.bitmask);
numa_free_nodemask(p.bitmask);
}
A = numa_alloc(NUM_LAYERS * sizeof(T*));
for(int l = 0; l < NUM_LAYERS; l++) {
A[l] = numa_alloc(n_size*m_size*sizeof(unsigned int));
}
B = numa_alloc(m_size*sizeof(unsigned int));
C = numa_alloc(m_size*sizeof(unsigned int));
mp_pages[0] = A;
if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
perror("move_pages(A)");
}
else if (mp_status[0] < 0) {
printf("move_pages error: %d", mp_status[0]);
}
else {
numa_node_data = mp_status[0];
}
numa_node_cpu = p.numa_node_cpu;
if (numa_node_cpu != -1) {
if (numa_run_on_node(numa_node_cpu) == -1) {
perror("numa_run_on_node");
numa_node_cpu = -1;
}
}
#else
A = malloc(NUM_LAYERS * sizeof(T*));
for(int l = 0; l < NUM_LAYERS; l++) {
A[l] = malloc(n_size*m_size*sizeof(unsigned int));
}
B = malloc(m_size*sizeof(unsigned int));
C = malloc(m_size*sizeof(unsigned int));
#endif
// Create an input file with arbitrary data.
init_data(A, m_size, n_size);
for (int i = 0; i < p.n_reps; i++) {
init_B(B, n_size);
start(&timer, 0, 0);
mlp_host(C, A, B, n_size, m_size);
stop(&timer, 0);
#if WITH_BENCHMARK
unsigned int nr_threads = 0;
#pragma omp parallel
#pragma omp atomic
nr_threads++;
printf("[::] MLP-CPU | n_threads=%d e_type=%s n_elements=%lu",
nr_threads, XSTR(T), n_size * m_size);
#if NUMA
printf(" numa_node_data=%d numa_node_cpu=%d numa_distance_cpu_data=%d",
numa_node_data, numa_node_cpu, numa_distance(numa_node_data, numa_node_cpu));
#endif
printf(" | throughput_MBps=%f throughput_MOpps=%f",
n_size * m_size * sizeof(T) / timer.time[0],
n_size * m_size / timer.time[0]);
printf(" latency_us=%f\n",
timer.time[0]);
#endif // WITH_BENCHMARK
}
#if NOP_SYNC
for(int rep = 0; rep < 200000; rep++) {
asm volatile("nop" ::);
}
#endif
uint32_t sum = mlp_host_sum(n_size);
printf("SUM = %d \n", sum);
#if NUMA
for(int l = 0; l < NUM_LAYERS; l++) {
numa_free(A[l], n_size*m_size*sizeof(unsigned int));
}
numa_free(A, NUM_LAYERS * sizeof(T*));
numa_free(B, m_size*sizeof(unsigned int));
numa_free(C, m_size*sizeof(unsigned int));
#else
for(int l = 0; l < NUM_LAYERS; l++) {
free(A[l]);
}
free(A);
free(B);
free(C);
#endif
return 0;
}
|