1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
/*
* Matrix vector multiplication with multiple tasklet
*
*/
#include <stdint.h>
#include <stdio.h>
#include <defs.h>
#include <mram.h>
#include <alloc.h>
#include <barrier.h>
#include <seqread.h>
#include "../support/common.h"
__host dpu_arguments_t DPU_INPUT_ARGUMENTS;
// GEMV
static void gemv(T *bufferC, T *bufferA, T *bufferB, int pos) {
for (unsigned int i = 0; i < BLOCK_SIZE / sizeof(T); i++) {
bufferC[pos] += bufferA[i] * bufferB[i];
}
return;
}
// Barrier
BARRIER_INIT(my_barrier, NR_TASKLETS);
// main
int main() {
unsigned int tasklet_id = me();
#if PRINT
printf("tasklet_id = %u\n", tasklet_id);
#endif
if (tasklet_id == 0){ // Initialize once the cycle counter
mem_reset(); // Reset the heap
}
// Barrier
barrier_wait(&my_barrier);
int32_t n_size = DPU_INPUT_ARGUMENTS.n_size;
int32_t n_size_pad = DPU_INPUT_ARGUMENTS.n_size_pad;
uint32_t nr_rows = DPU_INPUT_ARGUMENTS.nr_rows;
uint32_t max_rows = DPU_INPUT_ARGUMENTS.max_rows;
unsigned int nrows = nr_rows;
unsigned int rows_per_tasklet;
unsigned int start_row;
unsigned int chunks = nrows / (NR_TASKLETS + NR_TASKLETS);
unsigned int dbl_chunks = chunks + chunks;
rows_per_tasklet = dbl_chunks;
unsigned int rest_rows = nrows % (NR_TASKLETS + NR_TASKLETS);
if ((tasklet_id + tasklet_id) < rest_rows)
rows_per_tasklet += 2;
if (rest_rows > 0) {
if ((tasklet_id + tasklet_id) >= rest_rows) {
unsigned int hlf_rest_rows = rest_rows >> 1;
if ((rest_rows & 1) == 1)
start_row = (hlf_rest_rows + 1) * (dbl_chunks + 2) + (tasklet_id - 1 - hlf_rest_rows) * dbl_chunks;
else
start_row = (hlf_rest_rows) * (dbl_chunks + 2) + (tasklet_id - hlf_rest_rows) * dbl_chunks;
} else
start_row = tasklet_id * (dbl_chunks + 2);
} else {
start_row = tasklet_id * (dbl_chunks);
}
// Address of the current row in MRAM
uint32_t mram_base_addr_A = (uint32_t) (DPU_MRAM_HEAP_POINTER + start_row * n_size * sizeof(T));
uint32_t mram_base_addr_B = (uint32_t) (DPU_MRAM_HEAP_POINTER + max_rows * n_size_pad * sizeof(T));
uint32_t mram_base_addr_C = (uint32_t) (DPU_MRAM_HEAP_POINTER + max_rows * n_size_pad * sizeof(T) + n_size_pad * sizeof(T) + start_row * sizeof(T));
uint32_t mram_temp_addr_A = mram_base_addr_A;
uint32_t mram_temp_addr_B = mram_base_addr_B;
// Inititalize a local cache to store the MRAM block
T *cache_A = (T *) mem_alloc(BLOCK_SIZE + 8);
T *cache_A_aux = (T *) mem_alloc(8);
T *cache_B = (T *) mem_alloc(BLOCK_SIZE);
T *cache_C = (T *) mem_alloc(8);
int offset = 0;
// Iterate over nr_rows
for (unsigned int i = start_row; i < start_row + rows_per_tasklet; i += 2) {
mram_temp_addr_A = (uint32_t) (DPU_MRAM_HEAP_POINTER + i * n_size * sizeof(T));
mram_temp_addr_B = mram_base_addr_B;
cache_C[0] = 0;
cache_C[1] = 0;
for(unsigned int pos = 0; pos < 2 && i + pos < nr_rows; pos++){
int n = 0, j;
for (n = 0; n < (int32_t) (n_size - (BLOCK_SIZE/sizeof(T))); n += (BLOCK_SIZE / sizeof(T)))
{
mram_read((__mram_ptr void const*) (mram_temp_addr_A), cache_A, BLOCK_SIZE);
mram_read((__mram_ptr void const*) (mram_temp_addr_B), cache_B, BLOCK_SIZE);
if(offset)
{
for(unsigned int off = 0; off < (BLOCK_SIZE / sizeof(T)) - 1; off++)
{
cache_A[off] = cache_A[off + 1];
}
mram_read((__mram_ptr void const*) (mram_temp_addr_A + BLOCK_SIZE), cache_A_aux, 8);
cache_A[BLOCK_SIZE / sizeof(T) - 1] = cache_A_aux[0];
}
// Compute GEMV
gemv(cache_C, cache_A, cache_B, pos);
// Update memory addresses
mram_temp_addr_A += BLOCK_SIZE;
mram_temp_addr_B += BLOCK_SIZE;
}
mram_read((__mram_ptr void const*) (mram_temp_addr_A), cache_A, BLOCK_SIZE);
if(offset)
{
for(unsigned int off = 0; off < (BLOCK_SIZE / sizeof(T)) -1; off++)
{
cache_A[off] = cache_A[off + 1];
}
mram_read((__mram_ptr void const*) (mram_temp_addr_A + BLOCK_SIZE ), cache_A_aux, 8);
cache_A[BLOCK_SIZE / sizeof(T) - 1] = cache_A_aux[0];
}
mram_read((__mram_ptr void const*) (mram_temp_addr_B), cache_B, BLOCK_SIZE);
for (j = 0; j < (int) (n_size - n); j++) {
// Compute GEMV
if(j >= (int)(BLOCK_SIZE / sizeof(T))){
printf("error\n");
break;
}
cache_C[pos] += cache_A[j] * cache_B[j];
}
mram_temp_addr_A += (BLOCK_SIZE - ((BLOCK_SIZE / sizeof(T)) - (n_size - n)) * sizeof(T));
mram_temp_addr_B = mram_base_addr_B;
if(mram_temp_addr_A % 8 != 0)
{
offset = 1;
}
else
{
offset = 0;
}
}
// Write cache to current MRAM block
mram_write(cache_C, (__mram_ptr void *) (mram_base_addr_C), 8);
// Update memory address
mram_base_addr_C += 2 * sizeof(T);
}
return 0;
}
|