1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/**
* app.c
* Arithmetic Throughput Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include "../support/common.h"
#include "../support/timer.h"
#include "../support/params.h"
// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif
#if PRINT
#include <dpu_management.h>
#include <dpu_target_macros.h>
#endif
// Pointer declaration
static T* A;
static T* B;
static T* C2;
// Create input arrays
static void read_input(T* A, T* B, unsigned int nr_elements) {
srand(0);
printf("nr_elements\t%u\t", nr_elements);
for (unsigned int i = 0; i < nr_elements; i++) {
A[i] = (T) (rand());
B[i] = (T) (rand());
}
}
// Compute output in the host
static void update_host(T* C, T* A, unsigned int nr_elements) {
for (unsigned int i = 0; i < nr_elements; i++) {
#if ADD
C[i] = A[i] + (nr_elements / NR_DPUS);
#elif SUB
C[i] = A[i] - (nr_elements / NR_DPUS);
#elif MUL
C[i] = A[i] * (nr_elements / NR_DPUS);
#elif DIV
C[i] = A[i] / (nr_elements / NR_DPUS);
#endif
}
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
// Allocate DPUs and load binary
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
printf("Allocated %d DPU(s)\n", nr_of_dpus);
unsigned int i = 0;
double cc = 0;
double cc_min = 0;
const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size;
// Input/output allocation
A = malloc(input_size * sizeof(T));
B = malloc(input_size * sizeof(T));
T *bufferA = A;
T *bufferB = B;
C2 = malloc(input_size * sizeof(T));
// Create an input file with arbitrary data
read_input(A, B, input_size);
// Timer declaration
Timer timer;
printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL);
// Loop over main kernel
for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
// Compute output on CPU (performance comparison and verification purposes)
if(rep >= p.n_warmup)
start(&timer, 0, rep - p.n_warmup);
update_host(C2, A, input_size);
if(rep >= p.n_warmup)
stop(&timer, 0);
printf("Load input data\n");
if(rep >= p.n_warmup)
start(&timer, 1, rep - p.n_warmup);
// Input arguments
const unsigned int input_size_dpu = input_size / nr_of_dpus;
unsigned int kernel = 0;
dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel};
DPU_ASSERT(dpu_copy_to(dpu_set, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments, sizeof(input_arguments)));
// Copy input arrays
i = 0;
DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T)));
i++;
}
if(rep >= p.n_warmup)
stop(&timer, 1);
printf("Run program on DPU(s) \n");
// Run DPU kernel
if(rep >= p.n_warmup)
start(&timer, 2, rep - p.n_warmup);
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if(rep >= p.n_warmup)
stop(&timer, 2);
#if PRINT
{
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH (dpu_set, dpu) {
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
}
#endif
printf("Retrieve results\n");
if(rep >= p.n_warmup)
start(&timer, 3, rep - p.n_warmup);
dpu_results_t results[nr_of_dpus];
i = 0;
DPU_FOREACH (dpu_set, dpu) {
// Copy output array
DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferB + input_size_dpu * i, input_size_dpu * sizeof(T)));
#if PERF
results[i].cycles = 0;
// Retrieve tasklet timings
for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) {
dpu_results_t result;
result.cycles = 0;
DPU_ASSERT(dpu_copy_from(dpu, "DPU_RESULTS", each_tasklet * sizeof(dpu_results_t), &result, sizeof(dpu_results_t)));
if (result.cycles > results[i].cycles)
results[i].cycles = result.cycles;
}
#endif
i++;
}
if(rep >= p.n_warmup)
stop(&timer, 3);
#if PERF
uint64_t max_cycles = 0;
uint64_t min_cycles = 0xFFFFFFFFFFFFFFFF;
// Print performance results
if(rep >= p.n_warmup){
i = 0;
DPU_FOREACH(dpu_set, dpu) {
if(results[i].cycles > max_cycles)
max_cycles = results[i].cycles;
if(results[i].cycles < min_cycles)
min_cycles = results[i].cycles;
i++;
}
cc += (double)max_cycles;
cc_min += (double)min_cycles;
}
#endif
}
#ifdef ADD
printf("ADD\n");
#elif SUB
printf("SUB\n");
#elif MUL
printf("MUL\n");
#elif DIV
printf("DIV\n");
#endif
printf("DPU cycles = %g cc\n", cc / p.n_reps);
// Print timing results
printf("CPU ");
print(&timer, 0, p.n_reps);
printf("CPU-DPU ");
print(&timer, 1, p.n_reps);
printf("DPU Kernel ");
print(&timer, 2, p.n_reps);
printf("DPU-CPU ");
print(&timer, 3, p.n_reps);
// Check output
bool status = true;
for (unsigned int j = 0; j < input_size; j++) {
if(C2[j] != bufferB[j]){
status = false;
#if PRINT
const unsigned int input_size_dpu = input_size / nr_of_dpus;
int rank = -1;
int slice = -1;
int member = -1;
i = 0;
unsigned int dpu_id = j / input_size_dpu;
DPU_FOREACH (dpu_set, dpu) {
if (i == dpu_id) {
rank = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK;
slice = dpu_get_slice_id(dpu_from_set(dpu));
member = dpu_get_member_id(dpu_from_set(dpu));
}
i++;
}
printf("DPU %d (rank %d slice.member %d.%d) at offset %d: %u -- %u\n", j / input_size_dpu, rank, slice, member, j % input_size_dpu, C2[j], bufferB[j]);
#endif
}
}
if (status) {
printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n");
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n");
}
// Deallocation
free(A);
free(B);
free(C2);
DPU_ASSERT(dpu_free(dpu_set));
return status ? 0 : -1;
}
|