1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/**
* app.c
* CPU-DPU Communication Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include "../support/common.h"
#include "../support/timer.h"
#include "../support/params.h"
#if NUMA
#include <dpu_management.h>
#include <dpu_target_macros.h>
#include <numaif.h>
#include <numa.h>
void* mp_pages[1];
int mp_status[1];
int mp_nodes[1];
int numa_node_in = -1;
int numa_node_out = -1;
int numa_node_rank = -2;
int numa_node_cpu = -1;
#endif
// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif
#define XSTR(x) STR(x)
#define STR(x) #x
// Pointer declaration
static T* A;
static T* B;
static T* C;
static const char transfer_mode[] =
#if SERIAL
"SERIAL"
#elif BROADCAST
"BROADCAST"
#else
"PUSH"
#endif
;
// Create input arrays
static void read_input(T* A, T* B, unsigned int nr_elements) {
srand(0);
//printf("nr_elements\t%u\t", nr_elements);
for (unsigned int i = 0; i < nr_elements; i++) {
A[i] = (T) (rand());
B[i] = A[i];
}
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
uint32_t nr_of_ranks;
// Timer declaration
Timer timer;
// Allocate DPUs and load binary
start(&timer, 4, 0);
#if NR_DPUS
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
#elif NR_RANKS
DPU_ASSERT(dpu_alloc_ranks(NR_RANKS, NULL, &dpu_set));
#else
#error "NR_DPUS o NR_RANKS must be set"
#endif
stop(&timer, 4);
start(&timer, 5, 0);
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
stop(&timer, 5);
start(&timer, 6, 0);
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
stop(&timer, 6);
//printf("Allocated %d DPU(s)\n", nr_of_dpus);
unsigned int i = 0;
uint64_t input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size;
//printf("Load input data\n");
// Input arguments
const uint64_t input_size_dpu = input_size / nr_of_dpus;
#ifdef BROADCAST
const uint64_t transfer_size = input_size;
#else
const uint64_t transfer_size = input_size;
#endif
// Input/output allocation
#if NUMA
if (p.bitmask_in) {
numa_set_membind(p.bitmask_in);
numa_free_nodemask(p.bitmask_in);
}
A = numa_alloc(input_size * sizeof(T));
B = numa_alloc(input_size * sizeof(T));
#else
A = malloc(input_size * sizeof(T));
B = malloc(input_size * sizeof(T));
#endif
#if NUMA
if (p.bitmask_out) {
numa_set_membind(p.bitmask_out);
numa_free_nodemask(p.bitmask_out);
}
C = numa_alloc(input_size * sizeof(T));
#else
C = malloc(input_size * sizeof(T));
#endif
T *bufferA = A;
T *bufferC = C;
#if NUMA
struct bitmask *bitmask_all = numa_allocate_nodemask();
numa_bitmask_setall(bitmask_all);
numa_set_membind(bitmask_all);
numa_free_nodemask(bitmask_all);
#endif
#if NUMA
mp_pages[0] = A;
if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
perror("move_pages(A)");
}
else if (mp_status[0] < 0) {
printf("move_pages error: %d", mp_status[0]);
}
else {
numa_node_in = mp_status[0];
}
mp_pages[0] = C;
if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
perror("move_pages(C)");
}
else if (mp_status[0] < 0) {
printf("move_pages error: %d", mp_status[0]);
}
else {
numa_node_out = mp_status[0];
}
numa_node_cpu = p.numa_node_cpu;
if (numa_node_cpu != -1) {
if (numa_run_on_node(numa_node_cpu) == -1) {
perror("numa_run_on_node");
numa_node_cpu = -1;
}
}
#endif
#if NUMA
DPU_FOREACH (dpu_set, dpu) {
if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)))) {
numa_node_rank = -1;
} else {
numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)));
}
/*
if (rank_id != prev_rank_id) {
printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank);
prev_rank_id = rank_id;
}
*/
/*
printf("DPU @ rank %d slice.member %d.%d\n",
rank_id,
dpu_get_slice_id(dpu_from_set(dpu)),
dpu_get_member_id(dpu_from_set(dpu))
);
*/
}
#endif
// Create an input file with arbitrary data
read_input(A, B, input_size);
//printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL);
printf("[::] NMC-reconfiguration | n_dpus=%d n_ranks=%d n_tasklets=%d n_nops=%d n_instr=%d e_type=%s n_elements=%lu e_mode=%s"
#if NUMA
" numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_node_rank=%d"
#endif
" | latency_dpu_alloc_ns=%lu latency_dpu_load_ns=%lu latency_dpu_get_ns=%lu\n",
nr_of_dpus, nr_of_ranks, NR_TASKLETS, p.n_nops, p.n_instr, XSTR(T), transfer_size, transfer_mode,
#if NUMA
numa_node_in, numa_node_out, numa_node_cpu, numa_node_rank,
#endif
timer.nanoseconds[4], timer.nanoseconds[5], timer.nanoseconds[6]);
// Loop over main kernel
for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
// Copy input arrays
if(rep >= p.n_warmup)
start(&timer, 1, 0);
i = 0;
#ifdef SERIAL
DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T)));
i++;
}
#elif BROADCAST
DPU_ASSERT(dpu_broadcast_to(dpu_set, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA, input_size * sizeof(T), DPU_XFER_DEFAULT));
#else
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, bufferA + input_size_dpu * i));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT));
#endif
if(rep >= p.n_warmup)
stop(&timer, 1);
//printf("Run program on DPU(s) \n");
// Run DPU kernel
if(rep >= p.n_warmup)
start(&timer, 2, 0);
// empty kernel -> measure communication overhead
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if(rep >= p.n_warmup)
stop(&timer, 2);
#if PRINT
{
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH (dpu_set, dpu) {
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
}
#endif
//printf("Retrieve results\n");
if(rep >= p.n_warmup)
start(&timer, 3, 0);
i = 0;
#ifdef SERIAL
DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferC + input_size_dpu * i, input_size_dpu * sizeof(T)));
i++;
}
#else
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, bufferC + input_size_dpu * i));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT));
#endif
if(rep >= p.n_warmup)
stop(&timer, 3);
if (rep >= p.n_warmup) {
printf("[::] NMC-transfer | n_dpus=%d n_ranks=%d n_tasklets=%d n_nops=%d n_instr=%d e_type=%s n_elements=%lu n_elements_per_dpu=%lu e_mode=%s"
#if NUMA
" numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_node_rank=%d"
#endif
" | latency_dram_mram_ns=%lu latency_mram_dram_ns=%lu throughput_dram_mram_Bps=%f throughput_mram_dram_Bps=%f",
#ifdef BROADCAST
nr_of_dpus, nr_of_ranks, NR_TASKLETS, p.n_nops, p.n_instr, XSTR(T), transfer_size, input_size, transfer_mode,
#else
nr_of_dpus, nr_of_ranks, NR_TASKLETS, p.n_nops, p.n_instr, XSTR(T), transfer_size, input_size_dpu, transfer_mode,
#endif
#if NUMA
numa_node_in, numa_node_out, numa_node_cpu, numa_node_rank,
#endif
timer.nanoseconds[1], timer.nanoseconds[3],
transfer_size * sizeof(T) * 1e9 / timer.nanoseconds[1],
transfer_size * sizeof(T) * 1e9 / timer.nanoseconds[3]);
printf(" throughput_dram_mram_Opps=%f throughput_mram_dram_Opps=%f",
transfer_size * 1e9 / timer.nanoseconds[1],
transfer_size * 1e9 / timer.nanoseconds[3]);
printf(" latency_dpu_launch_ns=%lu\n",
timer.nanoseconds[2]);
}
}
// Check output
bool status = true;
#ifdef BROADCAST
for (i = 0; i < input_size/nr_of_dpus; i++) {
if(B[i] != bufferC[i]){
status = false;
#if PRINT
printf("%d: %u -- %u\n", i, B[i], bufferA[i]);
#endif
}
}
#else
for (i = 0; i < input_size; i++) {
if(B[i] != bufferC[i]){
status = false;
#if PRINT
printf("%d: %u -- %u\n", i, B[i], bufferA[i]);
#endif
}
}
#endif
if (status) {
//printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n");
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n");
}
// Deallocation
#if NUMA
numa_free(A, input_size * sizeof(T));
numa_free(B, input_size * sizeof(T));
numa_free(C, input_size * sizeof(T));
#else
free(A);
free(B);
free(C);
#endif
DPU_ASSERT(dpu_free(dpu_set));
return 0;
}
|