blob: c161d10eb56c5ebc8bf1b18459d927d83437f673 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/*
* Select with multiple tasklets
*
*/
#include <stdint.h>
#include <stdio.h>
#include <defs.h>
#include <mram.h>
#include <alloc.h>
#include <perfcounter.h>
#include <handshake.h>
#include <barrier.h>
#include "../support/common.h"
__host dpu_arguments_t DPU_INPUT_ARGUMENTS;
__host dpu_results_t DPU_RESULTS[NR_TASKLETS];
// Array for communication between adjacent tasklets
uint32_t message[NR_TASKLETS];
uint32_t message_partial_count;
// SEL in each tasklet
static unsigned int select(T *output, T *input){
unsigned int pos = 0;
#pragma unroll
for(unsigned int j = 0; j < REGS; j++) {
if(!pred(input[j])) {
output[pos] = input[j];
pos++;
}
}
return pos;
}
// Handshake with adjacent tasklets
static unsigned int handshake_sync(unsigned int l_count, unsigned int tasklet_id){
unsigned int p_count;
// Wait and read message
if(tasklet_id != 0){
handshake_wait_for(tasklet_id - 1);
p_count = message[tasklet_id];
}
else
p_count = 0;
// Write message and notify
if(tasklet_id < NR_TASKLETS - 1){
message[tasklet_id + 1] = p_count + l_count;
handshake_notify();
}
return p_count;
}
// Barrier
BARRIER_INIT(my_barrier, NR_TASKLETS);
extern int main_kernel1(void);
int (*kernels[nr_kernels])(void) = {main_kernel1};
int main(void) {
// Kernel
return kernels[DPU_INPUT_ARGUMENTS.kernel]();
}
// main_kernel1
int main_kernel1() {
unsigned int tasklet_id = me();
#if PRINT
printf("tasklet_id = %u\n", tasklet_id);
#endif
if (tasklet_id == 0){ // Initialize once the cycle counter
mem_reset(); // Reset the heap
}
// Barrier
barrier_wait(&my_barrier);
dpu_results_t *result = &DPU_RESULTS[tasklet_id];
uint32_t input_size_dpu_bytes = DPU_INPUT_ARGUMENTS.size;
// Address of the current processing block in MRAM
uint32_t base_tasklet = tasklet_id << BLOCK_SIZE_LOG2;
uint32_t mram_base_addr_A = (uint32_t)DPU_MRAM_HEAP_POINTER;
uint32_t mram_base_addr_B = (uint32_t)(DPU_MRAM_HEAP_POINTER + input_size_dpu_bytes);
// Initialize a local cache to store the MRAM block
T *cache_A = (T *) mem_alloc(BLOCK_SIZE);
T *cache_B = (T *) mem_alloc(BLOCK_SIZE);
// Initialize shared variable
if(tasklet_id == NR_TASKLETS - 1)
message_partial_count = 0;
// Barrier
barrier_wait(&my_barrier);
for(unsigned int byte_index = base_tasklet; byte_index < input_size_dpu_bytes; byte_index += BLOCK_SIZE * NR_TASKLETS){
// Load cache with current MRAM block
mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE);
// SELECT in each tasklet
uint32_t l_count = select(cache_B, cache_A); // In-place or out-of-place?
// Sync with adjacent tasklets
uint32_t p_count = handshake_sync(l_count, tasklet_id);
// Barrier
barrier_wait(&my_barrier);
// Write cache to current MRAM block
mram_write(cache_B, (__mram_ptr void*)(mram_base_addr_B + (message_partial_count + p_count) * sizeof(T)), l_count * sizeof(T));
// Total count in this DPU
if(tasklet_id == NR_TASKLETS - 1){
result->t_count = message_partial_count + p_count + l_count;
message_partial_count = result->t_count;
}
}
return 0;
}
|