summaryrefslogtreecommitdiff
path: root/SEL/host/app.c
blob: a2ec8b1493606c6374c8a61bc4610bf89a13d944 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/**
* app.c
* SEL Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>

#include "../support/common.h"
#include "../support/timer.h"
#include "../support/params.h"

// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif

#define XSTR(x) STR(x)
#define STR(x) #x

#if ENERGY
#include <dpu_probe.h>
#endif

// Pointer declaration
static T* A;
static T* C;
static T* C2;

// Create input arrays
static void read_input(T* A, unsigned int nr_elements, unsigned int nr_elements_round) {
    //srand(0);
    printf("nr_elements\t%u\t", nr_elements);
    for (unsigned int i = 0; i < nr_elements; i++) {
        //A[i] = (T) (rand());
        A[i] = i + 1;
    }
    for (unsigned int i = nr_elements; i < nr_elements_round; i++) { // Complete with removable elements
        A[i] = 0;
    }
}

// Compute output in the host
static unsigned int select_host(T* C, T* A, unsigned int nr_elements) {
    unsigned int pos = 0;
    for (unsigned int i = 0; i < nr_elements; i++) {
        if(!pred(A[i])) {
            C[pos] = A[i];
            pos++;
        }
    }
    return pos;
}

// Main of the Host Application
int main(int argc, char **argv) {

    struct Params p = input_params(argc, argv);

    struct dpu_set_t dpu_set, dpu;
    uint32_t nr_of_dpus;
    uint32_t nr_of_ranks;

    // Timer declaration
    Timer timer;

    // Allocate DPUs and load binary
#if !WITH_ALLOC_OVERHEAD
    DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
    timer.time[0] = 0; // alloc
#endif
#if !WITH_LOAD_OVERHEAD
    DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
    DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
    DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
    assert(nr_of_dpus == NR_DPUS);
    timer.time[1] = 0; // load
#endif
#if !WITH_FREE_OVERHEAD
    timer.time[6] = 0; // free
#endif

#if ENERGY
    struct dpu_probe_t probe;
    DPU_ASSERT(dpu_probe_init("energy_probe", &probe));
#endif

    unsigned int i = 0;
    uint32_t accum = 0;
    uint32_t total_count = 0;

    const unsigned int input_size = p.exp == 0 ? p.input_size * NR_DPUS : p.input_size; // Total input size (weak or strong scaling)
    const unsigned int input_size_dpu_ = divceil(input_size, NR_DPUS); // Input size per DPU (max.)
    const unsigned int input_size_dpu_round = 
        (input_size_dpu_ % (NR_TASKLETS * REGS) != 0) ? roundup(input_size_dpu_, (NR_TASKLETS * REGS)) : input_size_dpu_; // Input size per DPU (max.), 8-byte aligned

    // Input/output allocation
    A = malloc(input_size_dpu_round * NR_DPUS * sizeof(T));
    C = malloc(input_size_dpu_round * NR_DPUS * sizeof(T));
    C2 = malloc(input_size_dpu_round * NR_DPUS * sizeof(T));
    T *bufferA = A;
    T *bufferC = C2;

    dpu_results_t* results_retrieve[NR_DPUS];
    for (i = 0; i < NR_DPUS; i++) {
        results_retrieve[i] = (dpu_results_t*)malloc(NR_TASKLETS * sizeof(dpu_results_t));
    }

    // Create an input file with arbitrary data
    read_input(A, input_size, input_size_dpu_round * NR_DPUS);

    printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL);

    // Loop over main kernel
    for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {

#if WITH_ALLOC_OVERHEAD
        if(rep >= p.n_warmup) {
            start(&timer, 0, 0);
        }
        DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
        if(rep >= p.n_warmup) {
            stop(&timer, 0);
        }
#endif
#if WITH_LOAD_OVERHEAD
        if(rep >= p.n_warmup) {
            start(&timer, 1, 0);
        }
        DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
        if(rep >= p.n_warmup) {
            stop(&timer, 1);
        }
        DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
        DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
        assert(nr_of_dpus == NR_DPUS);
#endif

        // Compute output on CPU (performance comparison and verification purposes)
        if(rep >= p.n_warmup)
            start(&timer, 2, 0);
        total_count = select_host(C, A, input_size);
        if(rep >= p.n_warmup)
            stop(&timer, 2);

        printf("Load input data\n");
        if(rep >= p.n_warmup)
            start(&timer, 3, 0);
        // Input arguments
        const unsigned int input_size_dpu = input_size_dpu_round;
        unsigned int kernel = 0;
        dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel};
        // Copy input arrays
        i = 0;
        DPU_FOREACH(dpu_set, dpu, i) {
            DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments));
        }
        DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT));
        DPU_FOREACH(dpu_set, dpu, i) {
            DPU_ASSERT(dpu_prepare_xfer(dpu, bufferA + input_size_dpu * i));
        }
        DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT));
        if(rep >= p.n_warmup)
            stop(&timer, 3);

        printf("Run program on DPU(s) \n");
        // Run DPU kernel
        if(rep >= p.n_warmup) {
            start(&timer, 4, 0);
            #if ENERGY
            DPU_ASSERT(dpu_probe_start(&probe));
            #endif
        }
        DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
        if(rep >= p.n_warmup) {
            stop(&timer, 4);
            #if ENERGY
            DPU_ASSERT(dpu_probe_stop(&probe));
            #endif
        }

#if PRINT
        {
            unsigned int each_dpu = 0;
            printf("Display DPU Logs\n");
            DPU_FOREACH (dpu_set, dpu) {
                printf("DPU#%d:\n", each_dpu);
                DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
                each_dpu++;
            }
        }
#endif

        printf("Retrieve results\n");
        dpu_results_t results[NR_DPUS];
        uint32_t* results_scan = malloc(NR_DPUS * sizeof(uint32_t));
        i = 0;
        accum = 0;

        if(rep >= p.n_warmup)
		    start(&timer, 5, 0);
        // PARALLEL RETRIEVE TRANSFER

        DPU_FOREACH(dpu_set, dpu, i) {
            DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i]));
        }
        DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_results_t), DPU_XFER_DEFAULT));

        DPU_FOREACH(dpu_set, dpu, i) {
            // Retrieve tasklet timings
            for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) {
                // Count of this DPU
                if(each_tasklet == NR_TASKLETS - 1){
                    results[i].t_count = results_retrieve[i][each_tasklet].t_count;
                }
            }
            // Sequential scan
            uint32_t temp = results[i].t_count;
            results_scan[i] = accum;
            accum += temp;
#if PRINT
            printf("i=%d -- %u,  %u, %u\n", i, results_scan[i], accum, temp);
#endif
        }
        if(rep >= p.n_warmup)
            stop(&timer, 5);

        i = 0;
#if PARALLEL_READ
        if(rep >= p.n_warmup)
            start(&timer, 6, 0);
        DPU_FOREACH(dpu_set, dpu, i) {
            DPU_ASSERT(dpu_prepare_xfer(dpu, bufferC + input_size_dpu * i));
        }
        DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), input_size_dpu * sizeof(T), DPU_XFER_DEFAULT));
        if(rep >= p.n_warmup)
            stop(&timer, 6);
        if(rep >= p.n_warmup)
            start(&timer, 7, 0);
        uint64_t offset = results[0].t_count;
        for (i = 1; i < nr_of_dpus; i++) {
            memcpy(bufferC + offset, bufferC + input_size_dpu * i, results[i].t_count * sizeof(T));
            offset += results[i].t_count;
        }
        if(rep >= p.n_warmup)
            stop(&timer, 7);
#else
        if(rep >= p.n_warmup)
            start(&timer, 6, 0);
        DPU_FOREACH (dpu_set, dpu) {
            // Copy output array
            DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferC + results_scan[i], results[i].t_count * sizeof(T)));

            i++;
        }
        if(rep >= p.n_warmup)
            stop(&timer, 6);
#endif

#if WITH_ALLOC_OVERHEAD
#if WITH_FREE_OVERHEAD
        if(rep >= p.n_warmup) {
            start(&timer, 8, 0);
        }
#endif
        DPU_ASSERT(dpu_free(dpu_set));
#if WITH_FREE_OVERHEAD
        if(rep >= p.n_warmup) {
            stop(&timer, 8);
        }
#endif
#endif

        // Free memory
        free(results_scan);

        // Check output
        bool status = true;
        if(accum != total_count) status = false;
        for (i = 0; i < accum; i++) {
            if(C[i] != bufferC[i]){ 
                status = false;
#if PRINT
                printf("%d: %lu -- %lu\n", i, C[i], bufferC[i]);
#endif
            }
        }
        if (status) {
            printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n");
            if (rep >= p.n_warmup) {
                printf("[::] SEL UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%d n_elements_per_dpu=%d",
                    NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(T), BLOCK_SIZE, input_size, input_size_dpu_round);
                printf(" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d ",
                    WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD);
                printf("| latency_alloc_us=%f latency_load_us=%f latency_cpu_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f",
                    timer.time[0],
                    timer.time[1],
                    timer.time[2],
                    timer.time[3], // write
                    timer.time[4], // kernel
                    timer.time[5] + timer.time[6], // read
                    timer.time[8]);
                printf(" latency_read1_us=%f latency_read2_us=%f",
                    timer.time[5],
                    timer.time[6]);
#if PARALLEL_READ
                printf(" latency_sync_us=%f",
                    timer.time[7]);
#endif
                printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f",
                    input_size * sizeof(T) / timer.time[2],
                    input_size * sizeof(T) / timer.time[4],
#if PARALLEL_READ
                    input_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8])
#else
                    input_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[8])
#endif
                );
                printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f",
                    input_size * sizeof(T) / (timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]),
                    input_size * sizeof(T) / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]),
                    input_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]));
                printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f",
                    input_size / timer.time[2],
                    input_size / timer.time[4],
#if PARALLEL_READ
                    input_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8])
#else
                    input_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[8])
#endif
                );
                printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n",
                    input_size / (timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]),
                    input_size / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]),
                    input_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6]));
            }
        } else {
            printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n");
        }
    }

    #if ENERGY
    double energy;
    DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy));
    printf("DPU Energy (J): %f\t", energy);
    #endif	

    // Deallocation
    free(A);
    free(C);
    free(C2);

#if !WITH_ALLOC_OVERHEAD
    DPU_ASSERT(dpu_free(dpu_set));
#endif

    return 0;
}