summaryrefslogtreecommitdiff
path: root/TRNS/baselines/cpu/main.cpp
blob: c8cccafb65b61e7c81d9991b255435f51dbe9cfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
 * Copyright (c) 2016 University of Cordoba and University of Illinois
 * All rights reserved.
 *
 * Developed by:    IMPACT Research Group
 *                  University of Cordoba and University of Illinois
 *                  http://impact.crhc.illinois.edu/
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * with the Software without restriction, including without limitation the 
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 *      > Redistributions of source code must retain the above copyright notice,
 *        this list of conditions and the following disclaimers.
 *      > Redistributions in binary form must reproduce the above copyright
 *        notice, this list of conditions and the following disclaimers in the
 *        documentation and/or other materials provided with the distribution.
 *      > Neither the names of IMPACT Research Group, University of Cordoba, 
 *        University of Illinois nor the names of its contributors may be used 
 *        to endorse or promote products derived from this Software without 
 *        specific prior written permission.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
 * THE SOFTWARE.
 *
 */

#include "support/setup.h"
#include "kernel.h"
#include "support/common.h"
#include "support/timer.h"
#include "support/verify.h"

#include <unistd.h>
#include <thread>
#include <string.h>
#include <assert.h>

#define XSTR(x) STR(x)
#define STR(x) #x

#if NUMA
#include <numaif.h>
#include <numa.h>

void* mp_pages[1];
int mp_status[1];
int mp_nodes[1];
int numa_node_in = -1;
int numa_node_cpu = -1;
#endif

#if NUMA_MEMCPY
int numa_node_cpu_memcpy = -1;
int numa_node_local = -1;
int numa_node_in_is_local = 0;
#endif


// Params ---------------------------------------------------------------------
struct Params {

    int n_threads;
    int n_warmup;
    int n_reps;
    int M_;
    int m;
    int N_;
    int n;
#if NUMA
    struct bitmask* bitmask_in;
    int numa_node_cpu;
#endif
#if NUMA_MEMCPY
    int numa_node_cpu_memcpy;
    struct bitmask* bitmask_cpu;
#endif

    Params(int argc, char **argv) {
        n_threads     = 4;
        n_warmup      = 5;
        n_reps        = 50;
        M_            = 128;
        m             = 16;
        N_            = 128;
        n             = 8;
#if NUMA
        bitmask_in    = NULL;
        numa_node_cpu = -1;
#endif
#if NUMA_MEMCPY
        numa_node_cpu_memcpy  = -1;
        bitmask_cpu    = NULL;
#endif
        int opt;
        while((opt = getopt(argc, argv, "ht:w:r:m:n:o:p:a:c:C:M:")) >= 0) {
            switch(opt) {
            case 'h':
                usage();
                exit(0);
                break;
            case 't': n_threads     = atoi(optarg); break;
            case 'w': n_warmup      = atoi(optarg); break;
            case 'r': n_reps        = atoi(optarg); break;
            case 'm': m             = atoi(optarg); break;
            case 'n': n             = atoi(optarg); break;
            case 'o': M_            = atoi(optarg); break;
            case 'p': N_            = atoi(optarg); break;
#if NUMA
            case 'a': bitmask_in    = numa_parse_nodestring(optarg); break;
            case 'c': numa_node_cpu = atoi(optarg); break;
#if NUMA_MEMCPY
            case 'C': bitmask_cpu   = numa_parse_nodestring(optarg); break;
            case 'M': numa_node_cpu_memcpy = atoi(optarg); break;
#endif // NUMA_MEMCPY
#endif // NUMA
            default:
                fprintf(stderr, "\nUnrecognized option!\n");
                usage();
                exit(0);
            }
        }
    }

    void usage() {
        fprintf(stderr,
                "\nUsage:  ./trns [options]"
                "\n"
                "\nGeneral options:"
                "\n    -h        help"
                "\n    -t <T>    # of host threads (default=4)"
                "\n    -w <W>    # of untimed warmup iterations (default=5)"
                "\n    -r <R>    # of timed repetition iterations (default=50)"
                "\n"
                "\nData-partitioning-specific options:"
                "\n    TRNS only supports CPU-only or GPU-only execution"
                "\n"
                "\nBenchmark-specific options:"
			        "\n    -m <I>    m (default=16 elements)"
			        "\n    -n <I>    n (default=8 elements)"
			        "\n    -o <I>    M_ (default=128 elements)"
			        "\n    -p <I>    N_ (default=128 elements)"
                "\n");
    }
};

// Input Data -----------------------------------------------------------------
void read_input(T *x_vector, const Params &p) {
    int in_size = p.M_ * p.m * p.N_ * p.n;
    srand(5432);
    for(int i = 0; i < in_size; i++) {
        x_vector[i] = ((T)(rand() % 100) / 100);
    }
}

// Main ------------------------------------------------------------------------------------------
int main(int argc, char **argv) {

    const Params p(argc, argv);
    Timer        timer;

    // Allocate
    int M_       = p.M_;
    int m       = p.m;
    int N_       = p.N_;
    int n       = p.n;
    int in_size       = M_ * m * N_ * n;
    int finished_size = M_ * m * N_;

#if !NUMA_MEMCPY
    T *h_in_backup = (T *)malloc(in_size * sizeof(T));
    ALLOC_ERR(h_in_backup);
#endif

#if NUMA
    if (p.bitmask_in) {
        numa_set_membind(p.bitmask_in);
        numa_free_nodemask(p.bitmask_in);
    }
    T *h_in_out = (T *)numa_alloc(in_size * sizeof(T));
#else
    T *h_in_out = (T *)malloc(in_size * sizeof(T));
#endif


    T *h_local = h_in_out;


#if NUMA
#if NUMA_MEMCPY
    if (p.bitmask_cpu) {
        numa_set_membind(p.bitmask_cpu);
        numa_free_nodemask(p.bitmask_cpu);
    }
#endif // NUMA_MEMCPY
    std::atomic_int *h_finished =
        (std::atomic_int *)numa_alloc(sizeof(std::atomic_int) * finished_size);
    std::atomic_int *h_head = (std::atomic_int *)numa_alloc(N_ * sizeof(std::atomic_int));
#if !NUMA_MEMCPY
    struct bitmask *bitmask_all = numa_allocate_nodemask();
    numa_bitmask_setall(bitmask_all);
    numa_set_membind(bitmask_all);
    numa_free_nodemask(bitmask_all);
#endif // !NUMA_MEMCPY
#else // NUMA
    std::atomic_int *h_finished =
        (std::atomic_int *)malloc(sizeof(std::atomic_int) * finished_size);
    std::atomic_int *h_head = (std::atomic_int *)malloc(N_ * sizeof(std::atomic_int));

#endif // NUMA

    ALLOC_ERR(h_in_out, h_finished, h_head);

    // Initialize
    read_input(h_in_out, p);
    memset((void *)h_finished, 0, sizeof(std::atomic_int) * finished_size);
    for(int i = 0; i < N_; i++)
        h_head[i].store(0);

#if ! NUMA_MEMCPY
    memcpy(h_in_backup, h_in_out, in_size * sizeof(T)); // Backup for reuse across iterations
#endif

#if NUMA
    mp_pages[0] = h_in_out;
    if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
        perror("move_pages(A)");
    }
    else if (mp_status[0] < 0) {
        printf("move_pages error: %d", mp_status[0]);
    }
    else {
        numa_node_in = mp_status[0];
    }

    numa_node_cpu = p.numa_node_cpu;
    if (numa_node_cpu != -1) {
        if (numa_run_on_node(numa_node_cpu) == -1) {
            perror("numa_run_on_node");
            numa_node_cpu = -1;
        }
    }
#endif


#if NUMA_MEMCPY
    numa_node_in_is_local = ((numa_node_cpu == numa_node_in) || (numa_node_cpu + 8 == numa_node_in)) * 1;
#endif


    // Loop over main kernel
    for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {

#if NUMA_MEMCPY
        numa_node_cpu_memcpy = p.numa_node_cpu_memcpy;
        if(rep >= p.n_warmup)
            timer.start("local alloc");
        if (!numa_node_in_is_local) {
            h_local = (T *)numa_alloc(in_size * sizeof(T));
        }
        if(rep >= p.n_warmup)
            timer.stop("local alloc");

        if (!numa_node_in_is_local) {
            if (p.numa_node_cpu_memcpy != -1) {
                if (numa_run_on_node(p.numa_node_cpu_memcpy) == -1) {
                    perror("numa_run_on_node");
                    numa_node_cpu_memcpy = -1;
                }
            }
        }

        if(rep >= p.n_warmup)
            timer.start("memcpy");
        if (!numa_node_in_is_local) {
            memcpy(h_local, h_in_out, in_size * sizeof(T));
        }
        if(rep >= p.n_warmup)
            timer.stop("memcpy");

        if (p.numa_node_cpu != -1) {
            if (numa_run_on_node(p.numa_node_cpu) == -1) {
                perror("numa_run_on_node");
                numa_node_cpu = -1;
            }
        }

        mp_pages[0] = h_local;
        if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) {
            perror("move_pages(A_local)");
        }
        else if (mp_status[0] < 0) {
            printf("move_pages error: %d", mp_status[0]);
        }
        else {
            numa_node_local = mp_status[0];
        }
#else
        h_local = h_in_out;
        memcpy(h_local, h_in_backup, in_size * sizeof(T));
#endif

        // Reset
        memset((void *)h_finished, 0, sizeof(std::atomic_int) * finished_size);
	    for(int i = 0; i < N_; i++)
	        h_head[i].store(0);

        // start timer
        if(rep >= p.n_warmup)
            timer.start("Step 1");
        // Launch CPU threads
        std::thread main_thread_1(run_cpu_threads_100, h_local, h_finished, h_head, M_ * m, N_, n, p.n_threads); //M_ * m * N_);
        main_thread_1.join();
        // end timer
        if(rep >= p.n_warmup)
            timer.stop("Step 1");

        for(int i = 0; i < N_; i++)
            h_head[i].store(0);

        // start timer
        if(rep >= p.n_warmup)
            timer.start("Step 2");
        // Launch CPU threads
        std::thread main_thread_2(run_cpu_threads_010, h_local, h_head, m, n, M_ * N_, p.n_threads);
        main_thread_2.join();
        // end timer
        if(rep >= p.n_warmup)
            timer.stop("Step 2");

        memset((void *)h_finished, 0, sizeof(std::atomic_int) * finished_size);
        for(int i = 0; i < N_; i++)
            h_head[i].store(0);

        // start timer
        if(rep >= p.n_warmup)
            timer.start("Step 3");
        // Launch CPU threads
        for(int i = 0; i < N_; i++){
            std::thread main_thread_3(run_cpu_threads_100, h_local + i * M_ * n * m, h_finished + i * M_ * n, h_head + i, M_, n, m, p.n_threads); //M_ * n);
            main_thread_3.join();
        }
        // end timer
        if(rep >= p.n_warmup)
            timer.stop("Step 3");

#if NUMA_MEMCPY
        if(rep >= p.n_warmup)
            timer.start("free");
        if (!numa_node_in_is_local) {
            numa_free(h_local, in_size * sizeof(T));
        }
        if(rep >= p.n_warmup)
            timer.stop("free");
#endif

        if (rep >= p.n_warmup) {
#if NUMA_MEMCPY
            printf("[::] TRNS-CPU-MEMCPY | n_threads=%d e_type=%s n_elements=%d"
                " numa_node_inout=%d numa_node_cpu=%d numa_node_cpu_memcpy=%d numa_distance_inout_cpu=%d"
                " | throughput_MBps=%f",
                p.n_threads, XSTR(T), in_size,
                numa_node_in, numa_node_cpu, numa_node_cpu_memcpy, numa_distance(numa_node_in, numa_node_cpu),
                in_size * sizeof(T) / (timer.get("Step 1") + timer.get("Step 2") + timer.get("Step 3")));
            printf(" throughput_MOpps=%f",
                in_size / (timer.get("Step 1") + timer.get("Step 2") + timer.get("Step 3")));
            double latency_kernel = timer.get("Step 1") + timer.get("Step 2") + timer.get("Step 3");
            printf(" latency_step1_us=%f latency_step2_us=%f latency_step3_us=%f",
                timer.get("Step 1"), timer.get("Step 2"), timer.get("Step 3"));
            printf(" latency_kernel_us=%f latency_alloc_us=%f latency_memcpy_us=%f latency_free_us=%f latency_total_us=%f\n",
                latency_kernel, timer.get("local alloc"), timer.get("memcpy"), timer.get("free"),
                latency_kernel + timer.get("local alloc") + timer.get("memcpy") + timer.get("free"));
#else
            printf("[::] TRNS-CPU | n_threads=%d e_type=%s n_elements=%d"
#if NUMA
                " numa_node_inout=%d numa_node_cpu=%d numa_distance_inout_cpu=%d"
#endif
                " | throughput_MBps=%f",
                p.n_threads, XSTR(T), in_size,
#if NUMA
                numa_node_in, numa_node_cpu, numa_distance(numa_node_in, numa_node_cpu),
#endif
                in_size * sizeof(T) / (timer.get("Step 1") + timer.get("Step 2") + timer.get("Step 3")));
            printf(" throughput_MOpps=%f",
                in_size / (timer.get("Step 1") + timer.get("Step 2") + timer.get("Step 3")));
            printf(" latency_step1_us=%f latency_step2_us=%f latency_step3_us=%f latency_total_us=%f\n",
                timer.get("Step 1"), timer.get("Step 2"), timer.get("Step 3"),
                timer.get("Step 1") + timer.get("Step 2") + timer.get("Step 3"));
#endif // NUMA_MEMCPY
        }
    }
    //timer.print("Step 1", p.n_reps);
    //timer.print("Step 2", p.n_reps);
    //timer.print("Step 3", p.n_reps);

    // Verify answer
    //verify(h_local, h_in_backup, M_ * m, N_ * n, 1);

    // Free memory
#if NUMA
    numa_free(h_in_out, in_size * sizeof(T));
    numa_free(h_finished, sizeof(std::atomic_int) * finished_size);
    numa_free(h_head, N_ * sizeof(std::atomic_int));
#if !NUMA_MEMCPY
    numa_free(h_in_backup, in_size * sizeof(T));
#endif
#else
    free(h_in_out);
    free(h_finished);
    free(h_head);
    free(h_in_backup);
#endif

    return 0;
}