1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
* 3-step matrix transposition with multiple tasklets
* Acks: Stefano Ballarin (P&S PIM Fall 2020)
*
*/
#include <stdint.h>
#include <stdio.h>
#include <defs.h>
#include <mram.h>
#include <alloc.h>
#include <perfcounter.h>
#include <mutex.h>
#include <barrier.h>
#include "../support/common.h"
__host dpu_arguments_t DPU_INPUT_ARGUMENTS;
uint32_t curr_tile = 0; // protected by MUTEX
uint32_t get_tile();
void read_tile_step2(uint32_t A, uint32_t offset, T* variable, uint32_t m, uint32_t n);
void write_tile_step2(uint32_t A, uint32_t offset, T* variable, uint32_t m, uint32_t n);
void read_tile_step3(uint32_t A, uint32_t offset, T* variable, uint32_t m);
void write_tile_step3(uint32_t A, uint32_t offset, T* variable, uint32_t m);
_Bool get_done(uint32_t done_array_step3, uint32_t address, T* read_done);
_Bool get_and_set_done(uint32_t done_array_step3, uint32_t address, T* read_done);
// Barrier
BARRIER_INIT(my_barrier, NR_TASKLETS);
// Mutexes
MUTEX_INIT(tile_mutex);
MUTEX_INIT(done_mutex);
extern int main_kernel1(void);
extern int main_kernel2(void);
int (*kernels[nr_kernels])(void) = {main_kernel1, main_kernel2};
int main(void) {
// Kernel
return kernels[DPU_INPUT_ARGUMENTS.kernel]();
}
// Step 2: 0010
int main_kernel1() {
unsigned int tasklet_id = me();
#if PRINT
printf("tasklet_id = %u\n", tasklet_id);
#endif
if (tasklet_id == 0){ // Initialize once the cycle counter
mem_reset(); // Reset the heap
}
// Barrier
barrier_wait(&my_barrier);
uint32_t A = (uint32_t)DPU_MRAM_HEAP_POINTER; // A in MRAM
uint32_t M_ = DPU_INPUT_ARGUMENTS.M_;
uint32_t m = DPU_INPUT_ARGUMENTS.m;
uint32_t n = DPU_INPUT_ARGUMENTS.n;
T* data = (T*) mem_alloc(m * n * sizeof(T));
T* backup = (T*) mem_alloc(m * n * sizeof(T));
for(unsigned int tile = tasklet_id; tile < M_; tile += NR_TASKLETS){
read_tile_step2(A, tile * m * n, data, m, n);
for (unsigned int i = 0; i < m * n; i++){
backup[(i * m) - (m * n - 1) * (i / n)] = data[i];
}
write_tile_step2(A, tile * m * n, backup, m, n);
}
return 0;
}
// Step 3: 0100
int main_kernel2() {
unsigned int tasklet_id = me();
#if PRINT
printf("tasklet_id = %u\n", tasklet_id);
#endif
if (tasklet_id == 0){ // Initialize once the cycle counter
mem_reset(); // Reset the heap
curr_tile = 0;
}
// Barrier
barrier_wait(&my_barrier);
uint32_t A = (uint32_t)DPU_MRAM_HEAP_POINTER;
uint32_t m = DPU_INPUT_ARGUMENTS.m;
uint32_t n = DPU_INPUT_ARGUMENTS.n;
uint32_t M_ = DPU_INPUT_ARGUMENTS.M_;
uint32_t done_array = (uint32_t)(DPU_MRAM_HEAP_POINTER + M_ * m * n * sizeof(T));
const uint32_t tile_max = M_ * n - 1; // Tile id upper bound
T* data = (T*)mem_alloc(sizeof(T) * m);
T* backup = (T*)mem_alloc(sizeof(T) * m);
T* read_done = (T*)mem_alloc(sizeof(T));
uint32_t tile;
_Bool done;
tile = get_tile();
while (tile < tile_max){
uint32_t next_in_cycle = ((tile * M_) - tile_max * (tile / n));
if (next_in_cycle == tile){
tile = get_tile();
continue;
}
read_tile_step3(A, tile * m, data, m);
done = get_done(done_array, tile, read_done);
for(; done == 0; next_in_cycle = ((next_in_cycle * M_) - tile_max * (next_in_cycle / n))){
read_tile_step3(A, next_in_cycle * m, backup, m);
done = get_and_set_done(done_array, next_in_cycle, read_done);
if(!done) {
write_tile_step3(A, next_in_cycle * m, data, m);
}
for(uint32_t i = 0; i < m; i++){
data[i] = backup[i];
}
}
tile = get_tile();
}
return 0;
}
// Auxiliary functions
uint32_t get_tile(){
mutex_lock(tile_mutex);
uint32_t value = curr_tile;
curr_tile++;
mutex_unlock(tile_mutex);
return value;
}
void read_tile_step2(uint32_t A, uint32_t offset, T* variable, uint32_t m, uint32_t n){
int rest = m * n;
int transfer;
while(rest > 0){
if(rest * sizeof(T) > 2048){
transfer = 2048 / sizeof(T);
} else {
transfer = rest;
}
mram_read((__mram_ptr void*)(A + (offset + m * n - rest) * sizeof(T)), variable + (m * n - rest) * sizeof(T), sizeof(T) * transfer);
rest -= transfer;
}
}
void write_tile_step2(uint32_t A, uint32_t offset, T* variable, uint32_t m, uint32_t n){
int rest = m * n;
int transfer;
while(rest > 0){
if(rest * sizeof(T) > 2048){
transfer = 2048 / sizeof(T);
} else {
transfer = rest;
}
mram_write(variable + (m * n - rest) * sizeof(T), (__mram_ptr void*)(A + (offset + m * n - rest) * sizeof(T)), sizeof(T) * transfer);
rest -= transfer;
}
}
void read_tile_step3(uint32_t A, uint32_t offset, T* variable, uint32_t m){
mram_read((__mram_ptr void*)(A + offset * sizeof(T)), variable, sizeof(T) * m);
}
void write_tile_step3(uint32_t A, uint32_t offset, T* variable, uint32_t m){
mram_write(variable, (__mram_ptr void*)(A + offset * sizeof(T)), sizeof(T) * m);
}
_Bool get_done(uint32_t done_array_step3, uint32_t address, T* read_done){
uint32_t result;
mutex_lock(done_mutex);
mram_read((__mram_ptr void*)(done_array_step3 + address), read_done, sizeof(T));
result = ((*read_done & (0x01 << (address % sizeof(T)))) != 0);
mutex_unlock(done_mutex);
return (_Bool)result;
}
_Bool get_and_set_done(uint32_t done_array_step3, uint32_t address, T* read_done){
uint32_t result;
mutex_lock(done_mutex);
mram_read((__mram_ptr void*)(done_array_step3 + address), read_done, sizeof(T));
result = ((*read_done & (0x01 << (address % sizeof(T)))) != 0);
*read_done |= (0x01 << (address % sizeof(T)));
mram_write(read_done, (__mram_ptr void*)(done_array_step3 + address), sizeof(T));
mutex_unlock(done_mutex);
return (_Bool)result;
}
|