1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/**
* app.c
* TRNS Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <math.h>
#include "../support/common.h"
#include "../support/timer.h"
#include "../support/params.h"
#define XSTR(x) STR(x)
#define STR(x) #x
// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif
#if ENERGY
#include <dpu_probe.h>
#endif
#include <dpu_management.h>
#include <dpu_target_macros.h>
// Pointer declaration
static T* A_host;
static T* A_backup;
static T* A_result;
// Create input arrays
static void read_input(T* A, unsigned int nr_elements) {
srand(0);
for (unsigned int i = 0; i < nr_elements; i++) {
A[i] = (T) (rand());
}
}
// Compute output in the host
static void trns_host(T* input, unsigned int A, unsigned int B, unsigned int b){
T* output = (T*) malloc(sizeof(T) * A * B * b);
unsigned int next;
for (unsigned int j = 0; j < b; j++){
for (unsigned int i = 0; i < A * B; i++){
next = (i * A) - (A * B - 1) * (i / B);
output[next * b + j] = input[i*b+j];
}
}
for (unsigned int k = 0; k < A * B * b; k++){
input[k] = output[k];
}
free(output);
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t nr_of_dpus;
uint32_t nr_of_ranks;
#if ENERGY
struct dpu_probe_t probe;
DPU_ASSERT(dpu_probe_init("energy_probe", &probe));
#endif
unsigned int i = 0;
unsigned int N_ = p.N_;
const unsigned int n = p.n;
const unsigned int M_ = p.M_;
const unsigned int m = p.m;
N_ = p.exp == 0 ? N_ * NR_DPUS : N_;
// Input/output allocation
A_host = malloc(M_ * m * N_ * n * sizeof(T));
A_backup = malloc(M_ * m * N_ * n * sizeof(T));
A_result = malloc(M_ * m * N_ * n * sizeof(T));
T* done_host = malloc(M_ * n); // Host array to reset done array of step 3
memset(done_host, 0, M_ * n);
// Create an input file with arbitrary data
read_input(A_host, M_ * m * N_ * n);
memcpy(A_backup, A_host, M_ * m * N_ * n * sizeof(T));
// Timer declaration
Timer timer;
int numa_node_rank = -2;
// Loop over main kernel
for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
// Compute output on CPU (performance comparison and verification purposes)
memcpy(A_host, A_backup, M_ * m * N_ * n * sizeof(T));
if(rep >= p.n_warmup)
start(&timer, 0, 0);
trns_host(A_host, M_ * m, N_ * n, 1);
if(rep >= p.n_warmup)
stop(&timer, 0);
unsigned int curr_dpu = 0;
unsigned int active_dpus;
unsigned int active_dpus_before = 0;
unsigned int first_round = 1;
while(curr_dpu < N_){
// Allocate DPUs and load binary
if((N_ - curr_dpu) > NR_DPUS){
active_dpus = NR_DPUS;
} else {
active_dpus = (N_ - curr_dpu);
}
if((active_dpus_before != active_dpus) && (!(first_round))){
start(&timer, 1, 1);
DPU_ASSERT(dpu_free(dpu_set));
DPU_ASSERT(dpu_alloc(active_dpus, NULL, &dpu_set));
stop(&timer, 1);
start(&timer, 2, 1);
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
stop(&timer, 2);
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
} else if (first_round){
start(&timer, 1, 0);
DPU_ASSERT(dpu_alloc(active_dpus, NULL, &dpu_set));
stop(&timer, 1);
start(&timer, 2, 0);
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
stop(&timer, 2);
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
}
active_dpus_before = active_dpus;
if(rep >= p.n_warmup) {
start(&timer, 3, !first_round);
}
// Load input matrix (step 1)
for(unsigned int j = 0; j < M_ * m; j++){
unsigned int i = 0;
DPU_FOREACH(dpu_set, dpu) {
DPU_ASSERT(dpu_prepare_xfer(dpu, &A_backup[j * N_ * n + n * (i + curr_dpu)]));
i++;
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, sizeof(T) * j * n, sizeof(T) * n, DPU_XFER_DEFAULT));
}
if(rep >= p.n_warmup) {
stop(&timer, 3);
}
// Reset done array (for step 3)
if(rep >= p.n_warmup) {
start(&timer, 4, !first_round);
}
DPU_FOREACH(dpu_set, dpu) {
DPU_ASSERT(dpu_prepare_xfer(dpu, done_host));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, M_ * m * n * sizeof(T), (M_ * n) / 8 == 0 ? 8 : M_ * n, DPU_XFER_DEFAULT));
if(rep >= p.n_warmup) {
stop(&timer, 4);
}
if(rep >= p.n_warmup) {
start(&timer, 5, !first_round);
}
unsigned int kernel = 0;
dpu_arguments_t input_arguments = {m, n, M_, kernel};
// transfer control instructions to DPUs (run first program part)
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT));
if(rep >= p.n_warmup) {
stop(&timer, 5);
}
// Run DPU kernel
if(rep >= p.n_warmup){
start(&timer, 6, !first_round);
#if ENERGY
DPU_ASSERT(dpu_probe_start(&probe));
#endif
}
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if(rep >= p.n_warmup){
stop(&timer, 6);
#if ENERGY
DPU_ASSERT(dpu_probe_stop(&probe));
#endif
}
#if PRINT
{
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH (dpu_set, dpu) {
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
}
#endif
// transfer control instructions to DPUs (run second program part)
if(rep >= p.n_warmup) {
start(&timer, 7, !first_round);
}
kernel = 1;
dpu_arguments_t input_arguments2 = {m, n, M_, kernel};
DPU_FOREACH(dpu_set, dpu, i) {
DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments2));
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments2), DPU_XFER_DEFAULT));
if(rep >= p.n_warmup) {
stop(&timer, 7);
}
// Run DPU kernel
if(rep >= p.n_warmup){
start(&timer, 8, !first_round);
#if ENERGY
DPU_ASSERT(dpu_probe_start(&probe));
#endif
}
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if(rep >= p.n_warmup){
stop(&timer, 8);
#if ENERGY
DPU_ASSERT(dpu_probe_stop(&probe));
#endif
}
#if PRINT
{
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH (dpu_set, dpu) {
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
}
#endif
if(rep >= p.n_warmup) {
start(&timer, 9, !first_round);
}
DPU_FOREACH(dpu_set, dpu) {
DPU_ASSERT(dpu_prepare_xfer(dpu, (T*)(&A_result[curr_dpu * m * n * M_])));
curr_dpu++;
}
DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, sizeof(T) * m * n * M_, DPU_XFER_DEFAULT));
if(rep >= p.n_warmup) {
stop(&timer, 9);
}
if(first_round){
first_round = 0;
}
}
// int prev_rank_id = -1;
int rank_id = -1;
DPU_FOREACH (dpu_set, dpu) {
rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK;
if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)))) {
numa_node_rank = -1;
} else {
numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)));
}
/*
if (rank_id != prev_rank_id) {
printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank);
prev_rank_id = rank_id;
}
*/
}
start(&timer, 1, 1);
DPU_ASSERT(dpu_free(dpu_set));
stop(&timer, 1);
// Check output
bool status = true;
for (i = 0; i < M_ * m * N_ * n; i++) {
if(A_host[i] != A_result[i]){
status = false;
#if PRINT
printf("%d: %lu -- %lu\n", i, A_host[i], A_result[i]);
#endif
}
}
if (status) {
printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n");
unsigned long input_size = M_ * m * N_ * n;
if (rep >= p.n_warmup) {
/*
* timer 0: CPU version
* timer 1: realloc (dpu_free, dpu_alloc)
* timer 2: dpu_load
* timer 3: write input matrix (step 1)
* timer 4: write zeroed 'done' array (for step 3)
* timer 5: write control instructions (run first kernel)
* timer 6: run DPU program (first kernel)
* timer 7: write control instructions (run second kernel)
* timer 8: run DPU program (second kernel)
* timer 9: read transposed matrix
*/
printf("[::] TRNS-UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s n_elements=%lu numa_node_rank=%d ",
NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(T), input_size, numa_node_rank);
printf("| latency_cpu_us=%f latency_realloc_us=%f latency_load_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f",
timer.time[0], // CPU
timer.time[1], // free + alloc
timer.time[2], // load
timer.time[3] + timer.time[4] + timer.time[5] + timer.time[7], // write
timer.time[6] + timer.time[8], // kernel
timer.time[9]); // read
printf(" latency_write1_us=%f latency_write2_us=%f latency_write3_us=%f latency_write4_us=%f latency_kernel1_us=%f latency_kernel2_us=%f",
timer.time[3],
timer.time[4],
timer.time[5],
timer.time[7],
timer.time[6],
timer.time[8]);
printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f",
input_size * sizeof(T) / timer.time[0],
input_size * sizeof(T) / (timer.time[6] + timer.time[8]),
input_size * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]));
printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f",
input_size * sizeof(T) / (timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]),
input_size * sizeof(T) / (timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]),
input_size * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]));
printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f",
input_size / timer.time[0],
input_size / (timer.time[6] + timer.time[8]),
input_size / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]));
printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n",
input_size / (timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]),
input_size / (timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]),
input_size / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]));
}
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n");
}
}
#if ENERGY
double energy;
DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy));
printf("DPU Energy (J): %f\t", energy);
#endif
// Deallocation
free(A_host);
free(A_backup);
free(A_result);
free(done_host);
return 0;
}
|