1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include <stdint.h>
#include <omp.h>
#include "../../support/timer.h"
#define XSTR(x) STR(x)
#define STR(x) #x
#ifndef T
#define T int64_t
#endif
static int pos;
static T *A;
static T *B;
static T *C;
static T *C2;
// Create a "test file"
static T *create_test_file(unsigned int nr_elements) {
//srand(0);
A = (T*) malloc(nr_elements * sizeof(T));
B = (T*) malloc(nr_elements * sizeof(T));
C = (T*) malloc(nr_elements * sizeof(T));
//printf("nr_elements\t%u\t", nr_elements);
for (int i = 0; i < nr_elements; i++) {
//A[i] = (unsigned int) (rand());
//A[i] = i+1;
//A[i] = i%2==0?i+1:i;
A[i] = i%2==0?i:i+1;
B[i] = 0;
}
return A;
}
// Compute output in the host
static int unique_host(int size, int t) {
pos = 0;
C[pos] = A[pos];
omp_set_num_threads(t);
#pragma omp parallel for
for(int my = 1; my < size; my++) {
if(A[my] != A[my-1]) {
int p;
#pragma omp atomic update
pos++;
p = pos;
C[p] = A[my];
}
}
return pos;
}
// Params
typedef struct Params {
int input_size;
int n_warmup;
int n_reps;
int n_threads;
}Params;
void usage() {
fprintf(stderr,
"\nUsage: ./program [options]"
"\n"
"\nGeneral options:"
"\n -h help"
"\n -t <T> # of threads (default=8)"
"\n -w <W> # of untimed warmup iterations (default=1)"
"\n -e <E> # of timed repetition iterations (default=3)"
"\n"
"\nBenchmark-specific options:"
"\n -i <I> input size (default=8M elements)"
"\n");
}
struct Params input_params(int argc, char **argv) {
struct Params p;
p.input_size = 16 << 20;
p.n_warmup = 1;
p.n_reps = 3;
p.n_threads = 8;
int opt;
while((opt = getopt(argc, argv, "hd:i:w:e:t:")) >= 0) {
switch(opt) {
case 'h':
usage();
exit(0);
break;
case 'i': p.input_size = atoi(optarg); break;
case 'w': p.n_warmup = atoi(optarg); break;
case 'e': p.n_reps = atoi(optarg); break;
case 't': p.n_threads = atoi(optarg); break;
default:
fprintf(stderr, "\nUnrecognized option!\n");
usage();
exit(0);
}
}
assert(p.n_threads > 0 && "Invalid # of ranks!");
return p;
}
// Main
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
const unsigned int file_size = p.input_size;
uint32_t accum = 0;
int total_count;
// Create an input file with arbitrary data
create_test_file(file_size);
Timer timer;
for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
start(&timer, 0, 0);
total_count = unique_host(file_size, p.n_threads);
stop(&timer, 0);
unsigned int nr_threads = 0;
#pragma omp parallel
#pragma omp atomic
nr_threads++;
if (rep >= p.n_warmup) {
printf("[::] UNI CPU | n_threads=%d e_type=%s n_elements=%d "
"| throughput_MBps=%f",
nr_threads, XSTR(T), file_size,
file_size * sizeof(T) / timer.time[0]);
printf(" throughput_MOpps=%f",
file_size / timer.time[0]);
printall(&timer, 0);
}
}
free(A);
free(B);
free(C);
return 0;
}
|