1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/***************************************************************************
*cr
*cr (C) Copyright 2015 The Board of Trustees of the
*cr University of Illinois
*cr All Rights Reserved
*cr
***************************************************************************/
/*
In-Place Data Sliding Algorithms for Many-Core Architectures, presented in ICPP’15
Copyright (c) 2015 University of Illinois at Urbana-Champaign.
All rights reserved.
Permission to use, copy, modify and distribute this software and its documentation for
educational purpose is hereby granted without fee, provided that the above copyright
notice and this permission notice appear in all copies of this software and that you do
not sell the software.
THE SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND,EXPRESS, IMPLIED OR
OTHERWISE.
Authors: Juan Gómez-Luna (el1goluj@uco.es, gomezlun@illinois.edu), Li-Wen Chang (lchang20@illinois.edu)
*/
#include "ds.h"
#include "kernel.cu"
// Sequential CPU version
void cpu_unique(T* output, T* input, int elements){
int j = 0;
output[j] = input[j];
j++;
for (int i = 1; i < elements; i++){
if (input[i] != input[i-1]){
output[j] = input[i];
j++;
}
}
}
int main(int argc, char **argv){
// Syntax verification
if (argc != 4) {
printf("Wrong format\n");
printf("Syntax: %s <Device Input (%% elements) numElements>\n",argv[0]);
exit(1);
}
int device = atoi(argv[1]);
int input = atoi(argv[2]);
int numElements = atoi(argv[3]);
size_t size = numElements * sizeof(T);
// Set device
cudaDeviceProp device_properties;
cudaGetDeviceProperties(&device_properties,device);
cudaSetDevice(device);
printf("DS Unique on %s\n", device_properties.name);
printf("Thread block size = %d\n", L_DIM);
printf("Coarsening factor = %d\n", REGS);
#ifdef FLOAT
printf("Single precision array: %d elements\n", numElements);
#elif INT
printf("Integer array: %d elements\n", numElements);
#else
printf("Double precision array: %d elements\n", numElements);
#endif
// Event creation
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
float time1 = 0;
float time2 = 0;
// Allocate the host input vector A
T *h_A = (T*)malloc(size);
// Allocate the host output vectors
T *h_B = (T*)malloc(size);
T *h_C = (T*)malloc(size);
// Allocate the device input vector A
T *d_A = NULL;
cudaMalloc((void **)&d_A, size);
#define WARMUP 0
#define REP 1
int value1 = 0;
int value2 = 1;
int value3 = 2;
int value4 = 3;
unsigned int flagM = 0;
for(int iteration = 0; iteration < REP+WARMUP; iteration++){
// Initialize the host input vectors
srand(2014);
for(int i = 0; i < numElements; i++){
h_A[i] = value1;
if(i >= numElements/4 && i < numElements/2) h_A[i] = value2;
if(i >= numElements/2 && i < 3*numElements/4) h_A[i] = value3;
if(i >= 3*numElements/4 && i < numElements) h_A[i] = value4;
}
int M = (numElements * input)/100;
int m = M;
while(m>0){
int x = (int)(numElements*(((float)rand()/(float)RAND_MAX)));
if(h_A[x]==value1 || h_A[x]==value2 || h_A[x]==value3 || h_A[x]==value4){
h_A[x] = x+2;
m--;
}
}
#if PRINT
printf("\n");
for(int i = 0; i < numElements; ++i){
printf("%d ",*(h_A+i));
}
printf("\n");
#endif
// Copy the host input vector A in host memory to the device input vector in device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
int ldim = L_DIM;
// Atomic flags
unsigned int* d_flags = NULL;
int num_flags = numElements % (ldim * REGS) == 0 ? numElements / (ldim * REGS) : numElements / (ldim * REGS) + 1;
unsigned int *flags = (unsigned int *)calloc(sizeof(unsigned int), num_flags + 2);
flags[0] = 1;
flags[num_flags + 1] = 0;
cudaMalloc((void **)&d_flags, (num_flags + 2) * sizeof(unsigned int));
cudaMemcpy(d_flags, flags, (num_flags + 2) * sizeof(unsigned int), cudaMemcpyHostToDevice);
free(flags);
// Number of work-groups/thread blocks
int num_wg = num_flags;
// Start timer
cudaEventRecord( start, 0 );
// Kernel launch
unique<<<num_wg, ldim>>>(d_A, d_A, numElements, d_flags);
cudaMemcpy(&flagM, d_flags + num_flags, sizeof(unsigned int), cudaMemcpyDeviceToHost);
// End timer
cudaEventRecord( stop, 0 );
cudaEventSynchronize( stop );
cudaEventElapsedTime( &time1, start, stop );
if(iteration >= WARMUP) time2 += time1;
if(iteration == REP+WARMUP-1){
float timer = time2 / REP;
double bw = (double)((numElements + flagM) * sizeof(T)) / (double)(timer * 1000000.0);
printf("Execution time = %f ms, Throughput = %f GB/s\n", timer, bw);
}
// Free flags
cudaFree(d_flags);
}
// Copy to host memory
cudaMemcpy(h_B, d_A, size, cudaMemcpyDeviceToHost);
// CPU execution for comparison
cpu_unique(h_C, h_A, numElements);
// Verify that the result vector is correct
#if PRINT
for(int i = 0; i < numElements; ++i){
printf("%d ",*(h_B+i));
}
printf("\n");
for(int i = 0; i < numElements; ++i){
printf("%d ",*(h_C+i));
}
printf("\n");
#endif
for (int i = 0; i < flagM - 1; ++i){
if (h_B[i] != h_C[i]){
fprintf(stderr, "Result verification failed at element %d!\n", i);
exit(EXIT_FAILURE);
}
}
printf("Test PASSED\n");
// Free device global memory
cudaFree(d_A);
cudaEventDestroy(start);
cudaEventDestroy(stop);
// Free host memory
free(h_A);
free(h_B);
free(h_C);
return 0;
}
|