diff options
author | Birte Kristina Friesel <birte.friesel@uos.de> | 2025-03-20 14:21:11 +0100 |
---|---|---|
committer | Birte Kristina Friesel <birte.friesel@uos.de> | 2025-03-20 14:21:11 +0100 |
commit | 192dc253d9c576d2b2bfffce6cc645b695ab1e77 (patch) | |
tree | 50488bd58bbdedb08d414947391c58394993cf63 | |
parent | 5872348e31cc4698c2bb976662df5efac4467cae (diff) |
workload: Support LUT lookups
-rwxr-xr-x | bin/workload.py | 18 | ||||
-rw-r--r-- | lib/model.py | 32 | ||||
-rw-r--r-- | lib/parameters.py | 4 | ||||
-rw-r--r-- | lib/utils.py | 12 |
4 files changed, 55 insertions, 11 deletions
diff --git a/bin/workload.py b/bin/workload.py index ee2df0d..9e066a5 100755 --- a/bin/workload.py +++ b/bin/workload.py @@ -39,6 +39,11 @@ def main(): type=str, help="Path to model file (.json or .json.xz)", ) + parser.add_argument( + "--use-lut", + action="store_true", + help="Use LUT rather than performance model for prediction", + ) parser.add_argument("event", nargs="+", type=str) args = parser.parse_args() @@ -84,12 +89,19 @@ def main(): name, action = nn.split(".") param_model = None ref_model = None + for model in models: if name in model.names and action in model.attributes(name): ref_model = model - param_model, param_info = model.get_fitted() + if args.use_lut: + param_model = model.get_param_lut(allow_none=True) + else: + param_model, param_info = model.get_fitted() break - assert param_model is not None + + if param_model is None: + raise RuntimeError(f"Did not find a model for {name}.{action}") + param = param.removesuffix(")") if param == "": param = dict() @@ -98,7 +110,7 @@ def main(): param_list = dfatool.utils.param_dict_to_list(param, ref_model.parameters) - if not param_info(name, action).is_predictable(param_list): + if not args.use_lut and not param_info(name, action).is_predictable(param_list): logging.warning( f"Cannot predict {name}.{action}({param}), falling back to static model" ) diff --git a/lib/model.py b/lib/model.py index 0026249..dbe05aa 100644 --- a/lib/model.py +++ b/lib/model.py @@ -20,6 +20,7 @@ from .utils import ( by_name_to_by_param, by_param_to_by_name, regression_measures, + param_eq_or_none, ) logger = logging.getLogger(__name__) @@ -85,6 +86,7 @@ class AnalyticModel: compute_stats=True, force_tree=False, max_std=None, + by_param=None, from_json=None, ): """ @@ -154,9 +156,18 @@ class AnalyticModel: for name, name_data in from_json["name"].items(): self.attr_by_name[name] = dict() for attr, attr_data in name_data.items(): - self.attr_by_name[name][attr] = ModelAttribute.from_json( - name, attr, attr_data - ) + if by_param: + self.attr_by_name[name][attr] = ModelAttribute.from_json( + name, + attr, + attr_data, + data_values=by_name[name][attr], + param_values=by_name[name]["param"], + ) + else: + self.attr_by_name[name][attr] = ModelAttribute.from_json( + name, attr, attr_data + ) self.fit_done = True return @@ -255,7 +266,7 @@ class AnalyticModel: return static_model_getter - def get_param_lut(self, use_mean=False, fallback=False): + def get_param_lut(self, use_mean=False, fallback=False, allow_none=False): """ Get parameter-look-up-table model function: name, attribute, parameter values -> model value. @@ -285,7 +296,16 @@ class AnalyticModel: try: return lut_model[name][key][param] except KeyError: - if fallback: + if allow_none: + keys = filter( + lambda p: param_eq_or_none(param, p), + lut_model[name][key].keys(), + ) + values = list(map(lambda p: lut_model[name][key][p], keys)) + if not values: + raise + return np.mean(values) + elif fallback: return static_model[name][key] raise params = kwargs["params"] @@ -684,7 +704,7 @@ class AnalyticModel: for (nk, pk), v in data["byParam"]: by_param[(nk, tuple(pk))] = v by_name = by_param_to_by_name(by_param) - return cls(by_name, data["parameters"], from_json=data) + return cls(by_name, data["parameters"], by_param=by_param, from_json=data) else: assert data["parameters"] == parameters return cls(by_name, parameters, from_json=data) diff --git a/lib/parameters.py b/lib/parameters.py index b648c4c..acb044c 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -731,11 +731,11 @@ class ModelAttribute: return self.mutual_information_cache @classmethod - def from_json(cls, name, attr, data): + def from_json(cls, name, attr, data, data_values=None, param_values=None): param_names = data["paramNames"] arg_count = data["argCount"] - self = cls(name, attr, None, None, param_names, arg_count) + self = cls(name, attr, data_values, param_values, param_names, arg_count) self.model_function = df.ModelFunction.from_json(data["modelFunction"]) self.mean = self.model_function.value diff --git a/lib/utils.py b/lib/utils.py index 208db44..228e78c 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -207,6 +207,18 @@ def param_slice_eq(a, b, index): return False +def param_eq_or_none(a, b): + """ + Check if by_param keys a and b are identical, allowing a None in a to match any key in b. + """ + set_keys = tuple(filter(lambda i: a[i] is not None, range(len(a)))) + a_not_none = tuple(map(lambda i: a[i], set_keys)) + b_not_none = tuple(map(lambda i: b[i], set_keys)) + if a_not_none == b_not_none: + return True + return False + + def match_parameter_values(input_param: dict, match_param: dict): """ Check whether one of the paramaters in `input_param` has the same value in `match_param`. |