summaryrefslogtreecommitdiff
path: root/bin/analyze-trace.py
diff options
context:
space:
mode:
authorBirte Kristina Friesel <birte.friesel@uos.de>2025-06-05 10:46:49 +0200
committerBirte Kristina Friesel <birte.friesel@uos.de>2025-06-05 10:46:49 +0200
commit1eebb326bf29c00464dbecf6573b219a788e23c3 (patch)
tree71831610c1c5f536021e1bdad727e25dc00771a3 /bin/analyze-trace.py
parent95f4ed18da0cc168acfb2924eb1344298c07b779 (diff)
move (still very PoC) behaviour model learner from analyze-trace to behaviour.py
Diffstat (limited to 'bin/analyze-trace.py')
-rwxr-xr-xbin/analyze-trace.py196
1 files changed, 7 insertions, 189 deletions
diff --git a/bin/analyze-trace.py b/bin/analyze-trace.py
index 2186951..f721876 100755
--- a/bin/analyze-trace.py
+++ b/bin/analyze-trace.py
@@ -11,6 +11,7 @@ import dfatool.cli
import dfatool.plotter
import dfatool.utils
import dfatool.functions as df
+from dfatool.behaviour import SDKBehaviourModel
from dfatool.loader import Logfile
from dfatool.model import AnalyticModel
from dfatool.validation import CrossValidator
@@ -34,179 +35,6 @@ def parse_logfile(filename):
return loader.load(f, is_trace=True)
-def learn_pta(observations, annotation, delta=dict(), delta_param=dict()):
- prev_i = annotation.start.offset
- prev = "__init__"
- prev_non_kernel = prev
- meta_observations = list()
- n_seen = dict()
-
- total_latency_us = 0
-
- if annotation.kernels:
- # ggf. als dict of tuples, für den Fall dass Schleifen verschieden iterieren können?
- for i in range(prev_i, annotation.kernels[0].offset):
- this = observations[i]["name"] + " @ " + observations[i]["place"]
-
- if this in n_seen:
- if n_seen[this] == 1:
- logging.debug(
- f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
- )
- n_seen[this] += 1
- else:
- n_seen[this] = 1
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add(this)
-
- # annotation.start.param may be incomplete, for instance in cases
- # where DPUs are allocated before the input file is loadeed (and
- # thus before the problem size is known).
- # Hence, we must use annotation.end.param whenever we deal
- # with possibly problem size-dependent behaviour.
- if not (prev, this) in delta_param:
- delta_param[(prev, this)] = set()
- delta_param[(prev, this)].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- prev = this
- prev_i = i + 1
-
- total_latency_us += observations[i]["attribute"].get("latency_us", 0)
-
- meta_observations.append(
- {
- "name": f"__trace__ {this}",
- "param": annotation.end.param,
- "attribute": dict(
- filter(
- lambda kv: not kv[0].startswith("e_"),
- observations[i]["param"].items(),
- )
- ),
- }
- )
- prev_non_kernel = prev
-
- for kernel in annotation.kernels:
- prev = prev_non_kernel
- for i in range(prev_i, kernel.offset):
- this = observations[i]["name"] + " @ " + observations[i]["place"]
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add(this)
-
- if not (prev, this) in delta_param:
- delta_param[(prev, this)] = set()
- delta_param[(prev, this)].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- # The last iteration (next block) contains a single kernel,
- # so we do not increase total_latency_us here.
- # However, this means that we will only ever get one latency
- # value for each set of kernels with a common problem size,
- # despite potentially having far more data at our fingertips.
- # We could provide one total_latency_us for each kernel
- # (by combining start latency + kernel latency + teardown latency),
- # but for that we first need to distinguish between kernel
- # components and teardown components in the following block.
-
- prev = this
- prev_i = i + 1
-
- meta_observations.append(
- {
- "name": f"__trace__ {this}",
- "param": annotation.end.param,
- "attribute": dict(
- filter(
- lambda kv: not kv[0].startswith("e_"),
- observations[i]["param"].items(),
- )
- ),
- }
- )
-
- # There is no kernel end signal in the underlying data, so the last iteration also contains a kernel run.
- prev = prev_non_kernel
- for i in range(prev_i, annotation.end.offset):
- this = observations[i]["name"] + " @ " + observations[i]["place"]
-
- if this in n_seen:
- if n_seen[this] == 1:
- logging.debug(
- f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
- )
- n_seen[this] += 1
- else:
- n_seen[this] = 1
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add(this)
-
- if not (prev, this) in delta_param:
- delta_param[(prev, this)] = set()
- delta_param[(prev, this)].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- total_latency_us += observations[i]["attribute"].get("latency_us", 0)
-
- prev = this
-
- meta_observations.append(
- {
- "name": f"__trace__ {this}",
- "param": annotation.end.param,
- "attribute": dict(
- filter(
- lambda kv: not kv[0].startswith("e_"),
- observations[i]["param"].items(),
- )
- ),
- }
- )
-
- if not prev in delta:
- delta[prev] = set()
- delta[prev].add("__end__")
- if not (prev, "__end__") in delta_param:
- delta_param[(prev, "__end__")] = set()
- delta_param[(prev, "__end__")].add(
- dfatool.utils.param_dict_to_str(annotation.end.param)
- )
-
- for transition, count in n_seen.items():
- meta_observations.append(
- {
- "name": f"__loop__ {transition}",
- "param": annotation.end.param,
- "attribute": {"n_iterations": count},
- }
- )
-
- if total_latency_us:
- meta_observations.append(
- {
- "name": annotation.start.name,
- "param": annotation.end.param,
- "attribute": {"latency_us": total_latency_us},
- }
- )
-
- is_loop = dict(
- map(lambda kv: (kv[0], True), filter(lambda kv: kv[1] > 1, n_seen.items()))
- )
-
- return delta, delta_param, meta_observations, is_loop
-
-
def join_annotations(ref, base, new):
offset = len(ref)
return base + list(map(lambda x: x.apply_offset(offset), new))
@@ -243,22 +71,12 @@ def main():
map(parse_logfile, args.logfiles),
)
- delta_by_name = dict()
- delta_param_by_name = dict()
- is_loop = dict()
- for annotation in annotations:
- am_tt_param_names = sorted(annotation.start.param.keys())
- if annotation.name not in delta_by_name:
- delta_by_name[annotation.name] = dict()
- delta_param_by_name[annotation.name] = dict()
- _, _, meta_obs, _is_loop = learn_pta(
- observations,
- annotation,
- delta_by_name[annotation.name],
- delta_param_by_name[annotation.name],
- )
- observations += meta_obs
- is_loop.update(_is_loop)
+ bm = SDKBehaviourModel(observations, annotations)
+ observations += bm.meta_observations
+ is_loop = bm.is_loop
+ am_tt_param_names = bm.am_tt_param_names
+ delta_by_name = bm.delta_by_name
+ delta_param_by_name = bm.delta_param_by_name
def format_guard(guard):
return "∧".join(map(lambda kv: f"{kv[0]}={kv[1]}", guard))