summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2021-03-25 16:29:46 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2021-03-25 16:29:46 +0100
commit3d31c35b499bd8ddee786cd6b3ea972f13e89126 (patch)
tree3544826d591fefec263a5778cad9812ebad3a957 /bin
parenta11d1e92323ae1ea4c15b2413d620752bcceee5d (diff)
analyze-config: Add RAM model
Diffstat (limited to 'bin')
-rwxr-xr-xbin/analyze-config.py18
1 files changed, 11 insertions, 7 deletions
diff --git a/bin/analyze-config.py b/bin/analyze-config.py
index 9f04382..025ade7 100755
--- a/bin/analyze-config.py
+++ b/bin/analyze-config.py
@@ -102,11 +102,11 @@ def main():
model = AnalyticModel(by_name, symbols, compute_stats=False)
- def get_min(this_symbols, this_data, level):
+ def get_min(this_symbols, this_data, data_index=1, threshold=100, level=0):
- rom_sizes = list(map(lambda x: x[1], this_data))
+ rom_sizes = list(map(lambda x: x[data_index], this_data))
- if np.std(rom_sizes) < 100 or len(this_symbols) == 0:
+ if np.std(rom_sizes) < threshold or len(this_symbols) == 0:
return StaticFunction(np.mean(rom_sizes))
# sf.value_error["std"] = np.std(rom_sizes)
@@ -148,15 +148,19 @@ def main():
f"Level {level} split on {symbol} has {len(enabled)} children when enabled and {len(disabled)} children when disabled"
)
if len(enabled):
- child[1] = get_min(new_symbols, enabled, level + 1)
+ child[1] = get_min(new_symbols, enabled, data_index, threshold, level + 1)
if len(disabled):
- child[0] = get_min(new_symbols, disabled, level + 1)
+ child[0] = get_min(new_symbols, disabled, data_index, threshold, level + 1)
return SplitFunction(np.mean(rom_sizes), symbol_index, child)
- model = get_min(symbols, data, 0)
+ rom_model = get_min(symbols, data, 1, 100)
+ ram_model = get_min(symbols, data, 2, 20)
- output = {"model": model.to_json(), "symbols": symbols}
+ output = {
+ "model": {"rom": rom_model.to_json(), "ram": ram_model.to_json()},
+ "symbols": symbols,
+ }
with open("kconfigmodel.json", "w") as f:
json.dump(output, f, cls=NpEncoder)