summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rwxr-xr-xbin/analyze-log.py13
-rwxr-xr-xbin/workload.py66
2 files changed, 25 insertions, 54 deletions
diff --git a/bin/analyze-log.py b/bin/analyze-log.py
index 0b66bdf..50b5648 100755
--- a/bin/analyze-log.py
+++ b/bin/analyze-log.py
@@ -301,7 +301,7 @@ def main():
if args.export_dot:
dfatool.cli.export_dot(model, args.export_dot)
- if args.export_dref:
+ if args.export_dref or args.export_pseudo_dref:
dref = model.to_dref(
static_quality,
lut_quality,
@@ -321,9 +321,14 @@ def main():
mutual_information[param]
)
- dfatool.cli.export_dataref(
- args.export_dref, dref, precision=args.dref_precision
- )
+ if args.export_pseudo_dref:
+ dfatool.cli.export_pseudo_dref(
+ args.export_pseudo_dref, dref, precision=args.dref_precision
+ )
+ if args.export_dref:
+ dfatool.cli.export_dataref(
+ args.export_dref, dref, precision=args.dref_precision
+ )
if args.export_json:
with open(args.export_json, "w") as f:
diff --git a/bin/workload.py b/bin/workload.py
index ee2df0d..72b66bb 100755
--- a/bin/workload.py
+++ b/bin/workload.py
@@ -6,6 +6,7 @@ import logging
import sys
import dfatool.cli
import dfatool.utils
+from dfatool.behaviour import EventSequenceModel
from dfatool.model import AnalyticModel
@@ -39,6 +40,11 @@ def main():
type=str,
help="Path to model file (.json or .json.xz)",
)
+ parser.add_argument(
+ "--use-lut",
+ action="store_true",
+ help="Use LUT rather than performance model for prediction",
+ )
parser.add_argument("event", nargs="+", type=str)
args = parser.parse_args()
@@ -61,58 +67,18 @@ def main():
if args.info:
for i in range(len(models)):
print(f"""{args.models[i]}: {" ".join(models[i].parameters)}""")
+ _, param_info = models[i].get_fitted()
for name in models[i].names:
for attr in models[i].attributes(name):
- print(f" {name}.{attr}")
-
- aggregate = args.aggregate_init
- for event in args.event:
-
- event_normalizer = lambda p: p
- if "/" in event:
- v1, v2 = event.split("/")
- if dfatool.utils.is_numeric(v1):
- event = v2.strip()
- event_normalizer = lambda p: dfatool.utils.soft_cast_float(v1) / p
- elif dfatool.utils.is_numeric(v2):
- event = v1.strip()
- event_normalizer = lambda p: p / dfatool.utils.soft_cast_float(v2)
- else:
- raise RuntimeError(f"Cannot parse '{event}'")
-
- nn, param = event.split("(")
- name, action = nn.split(".")
- param_model = None
- ref_model = None
- for model in models:
- if name in model.names and action in model.attributes(name):
- ref_model = model
- param_model, param_info = model.get_fitted()
- break
- assert param_model is not None
- param = param.removesuffix(")")
- if param == "":
- param = dict()
- else:
- param = dfatool.utils.parse_conf_str(param)
-
- param_list = dfatool.utils.param_dict_to_list(param, ref_model.parameters)
-
- if not param_info(name, action).is_predictable(param_list):
- logging.warning(
- f"Cannot predict {name}.{action}({param}), falling back to static model"
- )
-
- event_output = event_normalizer(
- param_model(
- name,
- action,
- param=param_list,
- )
- )
-
- if args.aggregate == "sum":
- aggregate += event_output
+ print(f" {name}.{attr} {param_info(name, attr)}")
+
+ workload = EventSequenceModel(models)
+ aggregate = workload.eval_strs(
+ args.event,
+ aggregate=args.aggregate,
+ aggregate_init=args.aggregate_init,
+ use_lut=args.use_lut,
+ )
if args.normalize_output:
sf = dfatool.cli.parse_shift_function(