summaryrefslogtreecommitdiff
path: root/lib/behaviour.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/behaviour.py')
-rw-r--r--lib/behaviour.py77
1 files changed, 77 insertions, 0 deletions
diff --git a/lib/behaviour.py b/lib/behaviour.py
new file mode 100644
index 0000000..402ddc7
--- /dev/null
+++ b/lib/behaviour.py
@@ -0,0 +1,77 @@
+#!/usr/bin/env python3
+
+import logging
+from . import utils
+
+logger = logging.getLogger(__name__)
+
+
+class EventSequenceModel:
+ def __init__(self, models):
+ self.models = models
+
+ def _event_normalizer(self, event):
+ event_normalizer = lambda p: p
+ if "/" in event:
+ v1, v2 = event.split("/")
+ if utils.is_numeric(v1):
+ event = v2.strip()
+ event_normalizer = lambda p: utils.soft_cast_float(v1) / p
+ elif utils.is_numeric(v2):
+ event = v1.strip()
+ event_normalizer = lambda p: p / utils.soft_cast_float(v2)
+ else:
+ raise RuntimeError(f"Cannot parse '{event}'")
+ return event, event_normalizer
+
+ def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False):
+ for event in events:
+ event, event_normalizer = self._event_normalizer(event)
+ nn, param = event.split("(")
+ name, action = nn.split(".")
+ param_model = None
+ ref_model = None
+
+ for model in self.models:
+ if name in model.names and action in model.attributes(name):
+ ref_model = model
+ if use_lut:
+ param_model = model.get_param_lut(allow_none=True)
+ else:
+ param_model, param_info = model.get_fitted()
+ break
+
+ if param_model is None:
+ raise RuntimeError(f"Did not find a model for {name}.{action}")
+
+ param = param.removesuffix(")")
+ if param == "":
+ param = dict()
+ else:
+ param = utils.parse_conf_str(param)
+
+ param_list = utils.param_dict_to_list(param, ref_model.parameters)
+
+ if not use_lut and not param_info(name, action).is_predictable(param_list):
+ logging.warning(
+ f"Cannot predict {name}.{action}({param}), falling back to static model"
+ )
+
+ try:
+ event_output = event_normalizer(
+ param_model(
+ name,
+ action,
+ param=param_list,
+ )
+ )
+ except KeyError:
+ logging.error(f"Cannot predict {name}.{action}({param}) from LUT model")
+ raise
+
+ if aggregate == "sum":
+ aggregate_init += event_output
+ else:
+ raise RuntimeError(f"Unknown aggregate type: {aggregate}")
+
+ return aggregate_init