1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
#!/usr/bin/env python3
import logging
from . import utils
logger = logging.getLogger(__name__)
class EventSequenceModel:
def __init__(self, models):
self.models = models
def _event_normalizer(self, event):
event_normalizer = lambda p: p
if "/" in event:
v1, v2 = event.split("/")
if utils.is_numeric(v1):
event = v2.strip()
event_normalizer = lambda p: utils.soft_cast_float(v1) / p
elif utils.is_numeric(v2):
event = v1.strip()
event_normalizer = lambda p: p / utils.soft_cast_float(v2)
else:
raise RuntimeError(f"Cannot parse '{event}'")
return event, event_normalizer
def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False):
for event in events:
event, event_normalizer = self._event_normalizer(event)
nn, param = event.split("(")
name, action = nn.split(".")
param_model = None
ref_model = None
for model in self.models:
if name in model.names and action in model.attributes(name):
ref_model = model
if use_lut:
param_model = model.get_param_lut(allow_none=True)
else:
param_model, param_info = model.get_fitted()
break
if param_model is None:
raise RuntimeError(f"Did not find a model for {name}.{action}")
param = param.removesuffix(")")
if param == "":
param = dict()
else:
param = utils.parse_conf_str(param)
param_list = utils.param_dict_to_list(param, ref_model.parameters)
if not use_lut and not param_info(name, action).is_predictable(param_list):
logging.warning(
f"Cannot predict {name}.{action}({param}), falling back to static model"
)
try:
event_output = event_normalizer(
param_model(
name,
action,
param=param_list,
)
)
except KeyError:
logging.error(f"Cannot predict {name}.{action}({param}) from LUT model")
raise
if aggregate == "sum":
aggregate_init += event_output
else:
raise RuntimeError(f"Unknown aggregate type: {aggregate}")
return aggregate_init
|