summaryrefslogtreecommitdiff
path: root/HST-S/baselines/gpu/main.cpp
blob: e0b5dfa17496766614d442d21b073de7c4f93cb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 * Copyright (c) 2016 University of Cordoba and University of Illinois
 * All rights reserved.
 *
 * Developed by:    IMPACT Research Group
 *                  University of Cordoba and University of Illinois
 *                  http://impact.crhc.illinois.edu/
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * with the Software without restriction, including without limitation the 
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 *      > Redistributions of source code must retain the above copyright notice,
 *        this list of conditions and the following disclaimers.
 *      > Redistributions in binary form must reproduce the above copyright
 *        notice, this list of conditions and the following disclaimers in the
 *        documentation and/or other materials provided with the distribution.
 *      > Neither the names of IMPACT Research Group, University of Cordoba, 
 *        University of Illinois nor the names of its contributors may be used 
 *        to endorse or promote products derived from this Software without 
 *        specific prior written permission.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
 * THE SOFTWARE.
 *
 */

#include "support/cuda-setup.h"
#include "kernel.h"
#include "support/common.h"
#include "support/timer.h"
#include "support/verify.h"

#include <unistd.h>
#include <thread>
#include <assert.h>

// Params ---------------------------------------------------------------------
struct Params {

    int   device;
    int   n_gpu_threads;
    int   n_gpu_blocks;
    int   n_threads;
    int   n_warmup;
    int   n_reps;
    float alpha;
    int   in_size;
    int   n_bins;

    Params(int argc, char **argv) {
        device        = 0;
        n_gpu_threads  = 256;
        n_gpu_blocks = 16;
        n_threads     = 4;
        n_warmup      = 5;
        n_reps        = 50;
        alpha         = 0.2;
        in_size       = 1536 * 1024 * 640;
        n_bins        = 256;
        int opt;
        while((opt = getopt(argc, argv, "hd:i:g:t:w:r:a:n:b:")) >= 0) {
            switch(opt) {
            case 'h':
                usage();
                exit(0);
                break;
            case 'd': device        = atoi(optarg); break;
            case 'i': n_gpu_threads  = atoi(optarg); break;
            case 'g': n_gpu_blocks = atoi(optarg); break;
            case 't': n_threads     = atoi(optarg); break;
            case 'w': n_warmup      = atoi(optarg); break;
            case 'r': n_reps        = atoi(optarg); break;
            case 'a': alpha         = atof(optarg); break;
            case 'n': in_size       = atoi(optarg); break;
            case 'b': n_bins        = atoi(optarg); break;
            default:
                fprintf(stderr, "\nUnrecognized option!\n");
                usage();
                exit(0);
            }
        }
        if(alpha == 0.0) {
            assert(n_gpu_threads > 0 && "Invalid # of device threads!");
            assert(n_gpu_blocks > 0 && "Invalid # of device blocks!");
        } else if(alpha == 1.0) {
            assert(n_threads > 0 && "Invalid # of host threads!");
        } else if(alpha > 0.0 && alpha < 1.0) {
            assert(n_gpu_threads > 0 && "Invalid # of device threads!");
            assert(n_gpu_blocks > 0 && "Invalid # of device blocks!");
            assert(n_threads > 0 && "Invalid # of host threads!");
        } else {
#ifdef CUDA_8_0
            assert((n_gpu_threads > 0 && n_gpu_blocks > 0 || n_threads > 0) && "Invalid # of host + device workers!");
#else
            assert(0 && "Illegal value for -a");
#endif
        }
    }

    void usage() {
        fprintf(stderr,
                "\nUsage:  ./hsti [options]"
                "\n"
                "\nGeneral options:"
                "\n    -h        help"
                "\n    -d <D>    CUDA device ID (default=0)"
                "\n    -i <I>    # of device threads per block (default=256)"
                "\n    -g <G>    # of device blocks (default=16)"
                "\n    -t <T>    # of host threads (default=4)"
                "\n    -w <W>    # of untimed warmup iterations (default=5)"
                "\n    -r <R>    # of timed repetition iterations (default=50)"
                "\n"
                "\nData-partitioning-specific options:"
                "\n    -a <A>    fraction of input elements to process on host (default=0.2)"
#ifdef CUDA_8_0
                "\n              NOTE: Dynamic partitioning used when <A> is not between 0.0 and 1.0"
#else
                "\n              NOTE: <A> must be between 0.0 and 1.0"
#endif
                "\n"
                "\nBenchmark-specific options:"
                "\n    -n <N>    input size (default=1572864, i.e., 1536x1024)"
                "\n    -b <B>    # of bins in histogram (default=256)"
                "\n");
    }
};

// Input Data -----------------------------------------------------------------
void read_input(unsigned int *input, const Params &p) {

    char  dctFileName[100];
    FILE *File = NULL;

    // Open input file
    unsigned short temp;
    sprintf(dctFileName, "./input/image_VanHateren.iml");
    if((File = fopen(dctFileName, "rb")) != NULL) {
        for(int y = 0; y < p.in_size; y++) {
            int fr   = fread(&temp, sizeof(unsigned short), 1, File);
            input[y] = (unsigned int)ByteSwap16(temp);
            if(input[y] >= 4096)
                input[y] = 4095;
        }
        fclose(File);
    } else {
        printf("%s does not exist\n", dctFileName);
        exit(1);
    }
}

// Main ------------------------------------------------------------------------------------------
int main(int argc, char **argv) {

    Params p(argc, argv);
    CUDASetup    setcuda(p.device);
    Timer        timer;
    cudaError_t  cudaStatus;

    // Allocate buffers
    timer.start("Allocation");
    int n_tasks = divceil(p.in_size, p.n_gpu_threads);
#ifdef CUDA_8_0
    unsigned int *h_in;
    cudaStatus = cudaMallocManaged(&h_in, p.in_size * sizeof(unsigned int));
    std::atomic_uint *h_histo;
    cudaStatus = cudaMallocManaged(&h_histo, p.n_bins * sizeof(std::atomic_uint));
    unsigned int *    d_in     = h_in;
    std::atomic_uint *d_histo  = h_histo;
    std::atomic_int * worklist;
    cudaStatus = cudaMallocManaged(&worklist, sizeof(std::atomic_int));
#else
    unsigned int *    h_in          = (unsigned int *)malloc(p.in_size * sizeof(unsigned int));
    std::atomic_uint *h_histo       = (std::atomic_uint *)malloc(p.n_bins * sizeof(std::atomic_uint));
    unsigned int *    h_histo_merge = (unsigned int *)malloc(p.n_bins * sizeof(unsigned int));
    unsigned int *    d_in;
    cudaStatus = cudaMalloc((void**)&d_in, p.in_size * sizeof(unsigned int));
    unsigned int *    d_histo;
    cudaStatus = cudaMalloc((void**)&d_histo, p.n_bins * sizeof(unsigned int));
    ALLOC_ERR(h_in, h_histo, h_histo_merge);
#endif
    CUDA_ERR();
    cudaDeviceSynchronize();
    timer.stop("Allocation");
    timer.print("Allocation", 1);

    // Initialize
    timer.start("Initialization");
    const int max_gpu_threads = setcuda.max_gpu_threads();
    read_input(h_in, p);
#ifdef CUDA_8_0
    for(int i = 0; i < p.n_bins; i++) {
        h_histo[i].store(0);
    }
#else
    memset(h_histo, 0, p.n_bins * sizeof(unsigned int));
#endif
    cudaDeviceSynchronize();
    timer.stop("Initialization");
    timer.print("Initialization", 1);

#ifndef CUDA_8_0
    // Copy to device
    timer.start("Copy To Device");
    cudaStatus = cudaMemcpy(d_in, h_in, p.in_size * sizeof(unsigned int), cudaMemcpyHostToDevice);
    cudaStatus = cudaMemcpy(d_histo, h_histo, p.n_bins * sizeof(unsigned int), cudaMemcpyHostToDevice);
    cudaDeviceSynchronize();
    CUDA_ERR();
    timer.stop("Copy To Device");
    timer.print("Copy To Device", 1);
#endif

    // Loop over main kernel
    for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {

        // Reset
#ifdef CUDA_8_0
        if(p.alpha < 0.0 || p.alpha > 1.0) { // Dynamic partitioning
            worklist[0].store(0);
        }
        for(int i = 0; i < p.n_bins; i++) {
            h_histo[i].store(0);
        }
#else
        memset(h_histo, 0, p.n_bins * sizeof(unsigned int));
        cudaStatus = cudaMemcpy(d_histo, h_histo, p.n_bins * sizeof(unsigned int), cudaMemcpyHostToDevice);
        cudaDeviceSynchronize();
        CUDA_ERR();
#endif

        if(rep >= p.n_warmup)
            timer.start("Kernel");

        p.n_gpu_blocks = p.in_size / p.n_gpu_threads;

        // Launch GPU threads
        // Kernel launch
        if(p.n_gpu_blocks > 0) {
            assert(p.n_gpu_threads <= max_gpu_threads && 
                "The thread block size is greater than the maximum thread block size that can be used on this device");
            cudaStatus = call_Histogram_kernel(p.n_gpu_blocks, p.n_gpu_threads, p.in_size, p.n_bins, n_tasks, 
                p.alpha, d_in, (unsigned int*)d_histo, p.n_bins * sizeof(unsigned int)
#ifdef CUDA_8_0
                + sizeof(int), (int*)worklist
#endif
                );
            CUDA_ERR();
        }

        // Launch CPU threads
        std::thread main_thread(run_cpu_threads, h_histo, h_in, p.in_size, p.n_bins, p.n_threads, p.n_gpu_threads,
            n_tasks, p.alpha
#ifdef CUDA_8_0
            , worklist
#endif
            );

        cudaDeviceSynchronize();
        main_thread.join();

        if(rep >= p.n_warmup)
            timer.stop("Kernel");
    }
    timer.print("Kernel", p.n_reps);

#ifndef CUDA_8_0
    // Copy back
    timer.start("Copy Back and Merge");
    cudaStatus = cudaMemcpy(h_histo_merge, d_histo, p.n_bins * sizeof(unsigned int), cudaMemcpyDeviceToHost);
    CUDA_ERR();
    cudaDeviceSynchronize();
    for(unsigned int i = 0; i < p.n_bins; ++i) {
        h_histo_merge[i] += (unsigned int)h_histo[i];
    }
    timer.stop("Copy Back and Merge");
    timer.print("Copy Back and Merge", 1);
#endif

    // Verify answer
#ifdef CUDA_8_0
    verify((unsigned int *)h_histo, h_in, p.in_size, p.n_bins);
#else
    verify((unsigned int *)h_histo_merge, h_in, p.in_size, p.n_bins);
#endif

    // Free memory
    timer.start("Deallocation");
#ifdef CUDA_8_0
    cudaStatus = cudaFree(h_in);
    cudaStatus = cudaFree(h_histo);
    cudaStatus = cudaFree(worklist);
#else
    free(h_in);
    free(h_histo);
    free(h_histo_merge);
    cudaStatus = cudaFree(d_in);
    cudaStatus = cudaFree(d_histo);
#endif
    CUDA_ERR();
    cudaDeviceSynchronize();
    timer.stop("Deallocation");
    timer.print("Deallocation", 1);

    // Release timers
    timer.release("Allocation");
    timer.release("Initialization");
    timer.release("Copy To Device");
    timer.release("Kernel");
    timer.release("Copy Back and Merge");
    timer.release("Deallocation");

    printf("Test Passed\n");
    return 0;
}