summaryrefslogtreecommitdiff
path: root/HST-S/baselines/gpu/main.cpp
diff options
context:
space:
mode:
authorJuan Gomez Luna <juan.gomez@safari.ethz.ch>2021-06-16 19:46:05 +0200
committerJuan Gomez Luna <juan.gomez@safari.ethz.ch>2021-06-16 19:46:05 +0200
commit3de4b495fb176eba9a0eb517a4ce05903cb67acb (patch)
treefc6776a94549d2d4039898f183dbbeb2ce013ba9 /HST-S/baselines/gpu/main.cpp
parentef5c3688c486b80a56d3c1cded25f2b2387f2668 (diff)
PrIM -- first commit
Diffstat (limited to 'HST-S/baselines/gpu/main.cpp')
-rw-r--r--HST-S/baselines/gpu/main.cpp322
1 files changed, 322 insertions, 0 deletions
diff --git a/HST-S/baselines/gpu/main.cpp b/HST-S/baselines/gpu/main.cpp
new file mode 100644
index 0000000..e0b5dfa
--- /dev/null
+++ b/HST-S/baselines/gpu/main.cpp
@@ -0,0 +1,322 @@
+/*
+ * Copyright (c) 2016 University of Cordoba and University of Illinois
+ * All rights reserved.
+ *
+ * Developed by: IMPACT Research Group
+ * University of Cordoba and University of Illinois
+ * http://impact.crhc.illinois.edu/
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * with the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * > Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimers.
+ * > Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimers in the
+ * documentation and/or other materials provided with the distribution.
+ * > Neither the names of IMPACT Research Group, University of Cordoba,
+ * University of Illinois nor the names of its contributors may be used
+ * to endorse or promote products derived from this Software without
+ * specific prior written permission.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
+ * THE SOFTWARE.
+ *
+ */
+
+#include "support/cuda-setup.h"
+#include "kernel.h"
+#include "support/common.h"
+#include "support/timer.h"
+#include "support/verify.h"
+
+#include <unistd.h>
+#include <thread>
+#include <assert.h>
+
+// Params ---------------------------------------------------------------------
+struct Params {
+
+ int device;
+ int n_gpu_threads;
+ int n_gpu_blocks;
+ int n_threads;
+ int n_warmup;
+ int n_reps;
+ float alpha;
+ int in_size;
+ int n_bins;
+
+ Params(int argc, char **argv) {
+ device = 0;
+ n_gpu_threads = 256;
+ n_gpu_blocks = 16;
+ n_threads = 4;
+ n_warmup = 5;
+ n_reps = 50;
+ alpha = 0.2;
+ in_size = 1536 * 1024 * 640;
+ n_bins = 256;
+ int opt;
+ while((opt = getopt(argc, argv, "hd:i:g:t:w:r:a:n:b:")) >= 0) {
+ switch(opt) {
+ case 'h':
+ usage();
+ exit(0);
+ break;
+ case 'd': device = atoi(optarg); break;
+ case 'i': n_gpu_threads = atoi(optarg); break;
+ case 'g': n_gpu_blocks = atoi(optarg); break;
+ case 't': n_threads = atoi(optarg); break;
+ case 'w': n_warmup = atoi(optarg); break;
+ case 'r': n_reps = atoi(optarg); break;
+ case 'a': alpha = atof(optarg); break;
+ case 'n': in_size = atoi(optarg); break;
+ case 'b': n_bins = atoi(optarg); break;
+ default:
+ fprintf(stderr, "\nUnrecognized option!\n");
+ usage();
+ exit(0);
+ }
+ }
+ if(alpha == 0.0) {
+ assert(n_gpu_threads > 0 && "Invalid # of device threads!");
+ assert(n_gpu_blocks > 0 && "Invalid # of device blocks!");
+ } else if(alpha == 1.0) {
+ assert(n_threads > 0 && "Invalid # of host threads!");
+ } else if(alpha > 0.0 && alpha < 1.0) {
+ assert(n_gpu_threads > 0 && "Invalid # of device threads!");
+ assert(n_gpu_blocks > 0 && "Invalid # of device blocks!");
+ assert(n_threads > 0 && "Invalid # of host threads!");
+ } else {
+#ifdef CUDA_8_0
+ assert((n_gpu_threads > 0 && n_gpu_blocks > 0 || n_threads > 0) && "Invalid # of host + device workers!");
+#else
+ assert(0 && "Illegal value for -a");
+#endif
+ }
+ }
+
+ void usage() {
+ fprintf(stderr,
+ "\nUsage: ./hsti [options]"
+ "\n"
+ "\nGeneral options:"
+ "\n -h help"
+ "\n -d <D> CUDA device ID (default=0)"
+ "\n -i <I> # of device threads per block (default=256)"
+ "\n -g <G> # of device blocks (default=16)"
+ "\n -t <T> # of host threads (default=4)"
+ "\n -w <W> # of untimed warmup iterations (default=5)"
+ "\n -r <R> # of timed repetition iterations (default=50)"
+ "\n"
+ "\nData-partitioning-specific options:"
+ "\n -a <A> fraction of input elements to process on host (default=0.2)"
+#ifdef CUDA_8_0
+ "\n NOTE: Dynamic partitioning used when <A> is not between 0.0 and 1.0"
+#else
+ "\n NOTE: <A> must be between 0.0 and 1.0"
+#endif
+ "\n"
+ "\nBenchmark-specific options:"
+ "\n -n <N> input size (default=1572864, i.e., 1536x1024)"
+ "\n -b <B> # of bins in histogram (default=256)"
+ "\n");
+ }
+};
+
+// Input Data -----------------------------------------------------------------
+void read_input(unsigned int *input, const Params &p) {
+
+ char dctFileName[100];
+ FILE *File = NULL;
+
+ // Open input file
+ unsigned short temp;
+ sprintf(dctFileName, "./input/image_VanHateren.iml");
+ if((File = fopen(dctFileName, "rb")) != NULL) {
+ for(int y = 0; y < p.in_size; y++) {
+ int fr = fread(&temp, sizeof(unsigned short), 1, File);
+ input[y] = (unsigned int)ByteSwap16(temp);
+ if(input[y] >= 4096)
+ input[y] = 4095;
+ }
+ fclose(File);
+ } else {
+ printf("%s does not exist\n", dctFileName);
+ exit(1);
+ }
+}
+
+// Main ------------------------------------------------------------------------------------------
+int main(int argc, char **argv) {
+
+ Params p(argc, argv);
+ CUDASetup setcuda(p.device);
+ Timer timer;
+ cudaError_t cudaStatus;
+
+ // Allocate buffers
+ timer.start("Allocation");
+ int n_tasks = divceil(p.in_size, p.n_gpu_threads);
+#ifdef CUDA_8_0
+ unsigned int *h_in;
+ cudaStatus = cudaMallocManaged(&h_in, p.in_size * sizeof(unsigned int));
+ std::atomic_uint *h_histo;
+ cudaStatus = cudaMallocManaged(&h_histo, p.n_bins * sizeof(std::atomic_uint));
+ unsigned int * d_in = h_in;
+ std::atomic_uint *d_histo = h_histo;
+ std::atomic_int * worklist;
+ cudaStatus = cudaMallocManaged(&worklist, sizeof(std::atomic_int));
+#else
+ unsigned int * h_in = (unsigned int *)malloc(p.in_size * sizeof(unsigned int));
+ std::atomic_uint *h_histo = (std::atomic_uint *)malloc(p.n_bins * sizeof(std::atomic_uint));
+ unsigned int * h_histo_merge = (unsigned int *)malloc(p.n_bins * sizeof(unsigned int));
+ unsigned int * d_in;
+ cudaStatus = cudaMalloc((void**)&d_in, p.in_size * sizeof(unsigned int));
+ unsigned int * d_histo;
+ cudaStatus = cudaMalloc((void**)&d_histo, p.n_bins * sizeof(unsigned int));
+ ALLOC_ERR(h_in, h_histo, h_histo_merge);
+#endif
+ CUDA_ERR();
+ cudaDeviceSynchronize();
+ timer.stop("Allocation");
+ timer.print("Allocation", 1);
+
+ // Initialize
+ timer.start("Initialization");
+ const int max_gpu_threads = setcuda.max_gpu_threads();
+ read_input(h_in, p);
+#ifdef CUDA_8_0
+ for(int i = 0; i < p.n_bins; i++) {
+ h_histo[i].store(0);
+ }
+#else
+ memset(h_histo, 0, p.n_bins * sizeof(unsigned int));
+#endif
+ cudaDeviceSynchronize();
+ timer.stop("Initialization");
+ timer.print("Initialization", 1);
+
+#ifndef CUDA_8_0
+ // Copy to device
+ timer.start("Copy To Device");
+ cudaStatus = cudaMemcpy(d_in, h_in, p.in_size * sizeof(unsigned int), cudaMemcpyHostToDevice);
+ cudaStatus = cudaMemcpy(d_histo, h_histo, p.n_bins * sizeof(unsigned int), cudaMemcpyHostToDevice);
+ cudaDeviceSynchronize();
+ CUDA_ERR();
+ timer.stop("Copy To Device");
+ timer.print("Copy To Device", 1);
+#endif
+
+ // Loop over main kernel
+ for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
+
+ // Reset
+#ifdef CUDA_8_0
+ if(p.alpha < 0.0 || p.alpha > 1.0) { // Dynamic partitioning
+ worklist[0].store(0);
+ }
+ for(int i = 0; i < p.n_bins; i++) {
+ h_histo[i].store(0);
+ }
+#else
+ memset(h_histo, 0, p.n_bins * sizeof(unsigned int));
+ cudaStatus = cudaMemcpy(d_histo, h_histo, p.n_bins * sizeof(unsigned int), cudaMemcpyHostToDevice);
+ cudaDeviceSynchronize();
+ CUDA_ERR();
+#endif
+
+ if(rep >= p.n_warmup)
+ timer.start("Kernel");
+
+ p.n_gpu_blocks = p.in_size / p.n_gpu_threads;
+
+ // Launch GPU threads
+ // Kernel launch
+ if(p.n_gpu_blocks > 0) {
+ assert(p.n_gpu_threads <= max_gpu_threads &&
+ "The thread block size is greater than the maximum thread block size that can be used on this device");
+ cudaStatus = call_Histogram_kernel(p.n_gpu_blocks, p.n_gpu_threads, p.in_size, p.n_bins, n_tasks,
+ p.alpha, d_in, (unsigned int*)d_histo, p.n_bins * sizeof(unsigned int)
+#ifdef CUDA_8_0
+ + sizeof(int), (int*)worklist
+#endif
+ );
+ CUDA_ERR();
+ }
+
+ // Launch CPU threads
+ std::thread main_thread(run_cpu_threads, h_histo, h_in, p.in_size, p.n_bins, p.n_threads, p.n_gpu_threads,
+ n_tasks, p.alpha
+#ifdef CUDA_8_0
+ , worklist
+#endif
+ );
+
+ cudaDeviceSynchronize();
+ main_thread.join();
+
+ if(rep >= p.n_warmup)
+ timer.stop("Kernel");
+ }
+ timer.print("Kernel", p.n_reps);
+
+#ifndef CUDA_8_0
+ // Copy back
+ timer.start("Copy Back and Merge");
+ cudaStatus = cudaMemcpy(h_histo_merge, d_histo, p.n_bins * sizeof(unsigned int), cudaMemcpyDeviceToHost);
+ CUDA_ERR();
+ cudaDeviceSynchronize();
+ for(unsigned int i = 0; i < p.n_bins; ++i) {
+ h_histo_merge[i] += (unsigned int)h_histo[i];
+ }
+ timer.stop("Copy Back and Merge");
+ timer.print("Copy Back and Merge", 1);
+#endif
+
+ // Verify answer
+#ifdef CUDA_8_0
+ verify((unsigned int *)h_histo, h_in, p.in_size, p.n_bins);
+#else
+ verify((unsigned int *)h_histo_merge, h_in, p.in_size, p.n_bins);
+#endif
+
+ // Free memory
+ timer.start("Deallocation");
+#ifdef CUDA_8_0
+ cudaStatus = cudaFree(h_in);
+ cudaStatus = cudaFree(h_histo);
+ cudaStatus = cudaFree(worklist);
+#else
+ free(h_in);
+ free(h_histo);
+ free(h_histo_merge);
+ cudaStatus = cudaFree(d_in);
+ cudaStatus = cudaFree(d_histo);
+#endif
+ CUDA_ERR();
+ cudaDeviceSynchronize();
+ timer.stop("Deallocation");
+ timer.print("Deallocation", 1);
+
+ // Release timers
+ timer.release("Allocation");
+ timer.release("Initialization");
+ timer.release("Copy To Device");
+ timer.release("Kernel");
+ timer.release("Copy Back and Merge");
+ timer.release("Deallocation");
+
+ printf("Test Passed\n");
+ return 0;
+}