summaryrefslogtreecommitdiff
path: root/TS/baselines/cpu/streamp_openmp.cpp
blob: 1925e5221d4d48a511311d0ba5a6bafb4841657d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*++++++++
Written by Yan Zhu, Jan 2018.

This is SCRIMP++.

Details of the SCRIMP++ algorithm can be found at:
Yan Zhu, Chin-Chia M.Yeh, Zachary Zimmerman, Kaveh Kamgar and Eamonn Keogh,
"Solving Time Series Data Mining Problems at Scale with SCRIMP++", submitted to KDD 2018.

Usage: >> scrimpplusplus InputFileName SubsequenceLength stepsize
InputFileName: Name of the time series file
SubsequenceLength: Subsequence length m
stepsize: Step size ratio s/m. For all the experiments in the paper, stepsize is always set as 0.25.

example input:
>> scrimpplusplus ts_1000.txt 50 0.25

example output:
The code will generate two outputs.
SCRIMP_PLUS_PLUS_New_PreSCRIMP_MatrixProfile_and_Index_50_ts_1000.txt          This is the approximate matrix profile and matrix profile index generated after PreSCRIMP.
SCRIMP_PLUS_PLUS_New_MatrixProfile_and_Index_50_ts_1000.txt                    This is the final/exact matrix profile and matrix profile index, generated when the whole algorithm (PreSCRIMP+SCRIMP) is completed.

The first column of the output file is the matrix profile value.
The second column of the output file is the matrix profile index.
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <limits>
#include <vector>
#include <algorithm>
#include <string.h>
#include <sstream>
#include <chrono>
#include <omp.h>

#include "mprofile.h"

bool interrupt = false;
int numThreads, exclusionZone;
int windowSize, timeSeriesLength, ProfileLength;
int* profileIndex, *profileIndex_tmp;
DTYPE *AMean, *ASigma, *profile, *profile_tmp;
std::vector<int> idx;
std::vector<DTYPE> A;


void intHandler(int) {
    std::cout << '\n' << "[>>] Interrupt request by user..." << '\n';
    interrupt = true;
}


void preprocess()
{
  DTYPE* ACumSum   = new DTYPE[timeSeriesLength];
  DTYPE* ASqCumSum = new DTYPE[timeSeriesLength];
  DTYPE* ASum      = new DTYPE[ProfileLength];
  DTYPE* ASumSq    = new DTYPE[ProfileLength];
  DTYPE* ASigmaSq  = new DTYPE[ProfileLength];

  AMean  = new DTYPE[ProfileLength];
  ASigma = new DTYPE[ProfileLength];

  ACumSum[0]   = A[0];
  ASqCumSum[0] = A[0] * A[0];

  for (int i = 1; i < timeSeriesLength; i++)
  {
    ACumSum[i]   = A[i] + ACumSum[i - 1];
    ASqCumSum[i] = A[i] * A[i] + ASqCumSum[i - 1];
  }

  ASum[0] = ACumSum[windowSize - 1];
  ASumSq[0] = ASqCumSum[windowSize - 1];

  for (int i = 0; i < timeSeriesLength - windowSize; i++)
  {
    ASum[i + 1]   = ACumSum[windowSize + i] - ACumSum[i];
    ASumSq[i + 1] = ASqCumSum[windowSize + i] - ASqCumSum[i];
  }

  for (int i = 0; i < ProfileLength; i++)
  {
      AMean[i] = ASum[i]/ windowSize;
      ASigmaSq[i] = ASumSq[i] / windowSize - AMean[i] * AMean[i];
      ASigma[i] = sqrt(ASigmaSq[i]);
  }

  delete ACumSum;
  delete ASqCumSum;
  delete ASum;
  delete ASumSq;
  delete ASigmaSq;
}

void streamp()
{

  #pragma omp parallel
  {
    DTYPE  lastz, distance, windowSizeDTYPE;
    DTYPE  * distances, * lastzs;
    int diag, my_offset, i, j, ri;

    distances = new DTYPE[ARIT_FACT];
    lastzs    = new DTYPE[ARIT_FACT];

    windowSizeDTYPE = (DTYPE) windowSize;

    my_offset = omp_get_thread_num() * ProfileLength;

    #pragma omp for schedule(dynamic)
    for (ri = 0; ri < idx.size(); ri++)
    {
      //select a diagonal

      if(!interrupt){

      diag = idx[ri];

      lastz = 0;

      //calculate the dot product of every two time series values that ar diag away
      #pragma omp simd
      for (j = diag; j < windowSize + diag; j++)
      {
        lastz += A[j] * A[j-diag];
      }

      //j is the column index, i is the row index of the current distance value in the distance matrix
      j = diag;
      i = 0;

      //evaluate the distance based on the dot product
      distance = 2 * (windowSizeDTYPE - (lastz - windowSizeDTYPE* AMean[j] * AMean[i]) / (ASigma[j] * ASigma[i]));

      //update matrix profile and matrix profile index if the current distance value is smaller
      if (distance < profile_tmp[my_offset + j])
      {
        profile_tmp[my_offset + j] = distance;
        profileIndex_tmp [my_offset+j] = i;
      }

      if (distance < profile_tmp[my_offset + i])
      {
        profile_tmp[my_offset + i] = distance;
        profileIndex_tmp [my_offset + i] = j;
      }
      i = 1;
      j = diag + 1;

      /*while(j < (ProfileLength - ARIT_FACT))
      {
        #pragma omp simd
        for(int k = 0; k < ARIT_FACT; k++)
        {
          lastzs[k] = (A[k + j + windowSize - 1] * A[k + i + windowSize - 1]) - (A[k + j - 1] * A[k + i - 1]);
        }

        lastzs[0] += lastz;
        #pragma unroll (ARIT_FACT - 1)
        for(int k = 1; k < ARIT_FACT; k++)
        {
          lastzs[k] += lastzs[k-1];
        }
        lastz = lastzs[ARIT_FACT - 1];

        #pragma omp simd
        for(int k = 0; k < ARIT_FACT; k++)
        {
          distances[k] =  2 * (windowSizeDTYPE - (lastzs[k] -  AMean[k+j]  * AMean[k+i] * windowSizeDTYPE) / (ASigma[k+j] * ASigma[k+i]));
        }

        #pragma omp simd
        for(int k = 0; k < ARIT_FACT; k++)
        {
          if (distances[k] < profile_tmp[k + my_offset + j])
          {
            profile_tmp[k + my_offset + j] = distances[k];
            profileIndex_tmp [k + my_offset+ j] = i + k;
          }

         if (distances[k] < profile_tmp[k + my_offset + i])
          {
            profile_tmp[k + my_offset + i] = distances[k];
            profileIndex_tmp[k + my_offset + i] = j + k;
          }
        }
        i+=ARIT_FACT;
        j+=ARIT_FACT;
      }

      while(j < ProfileLength)
      {
        lastz   = lastz + (A[j + windowSize - 1] * A[i + windowSize - 1]) - (A[j - 1] * A[i - 1]);
        distance = 2 * (windowSizeDTYPE - (lastz -  AMean[j]  * AMean[i] * windowSizeDTYPE) / (ASigma[j] * ASigma[i]));

        if (distance < profile_tmp[my_offset + j])
        {
          profile_tmp[my_offset + j] = distance;
          profileIndex_tmp [my_offset+ j] = i;
        }

        if (distance < profile_tmp[my_offset + i])
        {
          profile_tmp[my_offset + i] = distance;
          profileIndex_tmp[my_offset + i] = j;
        }
        i++;
        j++;
      }*/
    }
    }

    delete(lastzs);
    delete(distances);

    #pragma omp barrier

    // Reduce the (partial) result
    DTYPE min_distance;
    int min_index;

    #pragma omp for schedule(static)
    for (int colum = 0; colum < ProfileLength; colum++)
    {
      min_distance = std::numeric_limits<DTYPE>::infinity();
      min_index = 0;
      #pragma unroll(256)
      for(int row = 0; row < numThreads; row++)
      {
        if(profile_tmp[colum + (row*ProfileLength)] < min_distance)
        {
          min_distance = profile_tmp[colum + (row * ProfileLength)];
          min_index    = profileIndex_tmp[colum + (row * ProfileLength)];
        }
      }
      profile[colum]      = min_distance;
      profileIndex[colum] = min_index;
    }
    #pragma omp barrier
  }

  delete(AMean);
  delete(ASigma);
  delete(profile_tmp);
  delete(profileIndex_tmp);
}

int main(int argc, char* argv[])
{
  bool sequentialDiags = false;
  // Creation of time meassure structures
  std::chrono::high_resolution_clock::time_point tprogstart, tstart, tend;
  std::chrono::duration<double> time_elapsed;

  // Creation of interrupt handler
  struct sigaction act;
  act.sa_handler = intHandler;
  sigaction(SIGINT, &act, NULL);

  // Set window size
  windowSize = atoi(argv[2]);

  // Set the exclusion zone
  exclusionZone = (int) (windowSize * 0.25);

  // Set the thread number
  //numThreads = atoi(argv[3]);
  //omp_set_num_threads(numThreads);

  numThreads = omp_get_max_threads();

  // Set computational order
  if(argc > 4)
  	sequentialDiags = (strcmp(argv[4], "-s") == 0);

  // Display info through console
  std::cout << std::endl;
  std::cout << "############################################################" << std::endl;
  std::cout << "///////////////////////// STREAMP //////////////////////////" << std::endl;
  std::cout << "############################################################" << std::endl;
  std::cout << std::endl;
  std::cout << "[>>] Reading File..." << std::endl;

  /* Read time series file */
  tstart = std::chrono::high_resolution_clock::now();
//  tprogstart = tstart;

  std::stringstream outfilename_num;
  outfilename_num << windowSize;
  std::string outfilenamenum = outfilename_num.str();
  std::string inputfilename  = argv[1];
  std::string outfilename = "SCRIMP_PLUS_PLUS_New_MatrixProfile_and_Index_" + outfilenamenum + "_" + inputfilename;

  loadTimeSeriesFromFile(inputfilename, A, timeSeriesLength);

  tend = std::chrono::high_resolution_clock::now();
  time_elapsed = tend - tstart;
  std::cout << "[OK] Read File Time: " << std::setprecision(std::numeric_limits<double>::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl;

  // Set Matrix Profile Length
  ProfileLength = timeSeriesLength - windowSize + 1;

  // Display info through console
  std::cout << std::endl;
  std::cout << "------------------------------------------------------------" << std::endl;
  std::cout << "************************** INFO ****************************" << std::endl;
  std::cout << std::endl;
  std::cout << " Time series length: " << timeSeriesLength << std::endl;
  std::cout << " Window size:        " << windowSize       << std::endl;
  std::cout << " Exclusion zone:     " << exclusionZone    << std::endl;
  std::cout << " Profile length:     " << timeSeriesLength << std::endl;
  std::cout << " Max avail. threads: " << numThreads       << std::endl;
  std::cout << " Sequential order:   ";
  if(sequentialDiags) std::cout << "true" << std::endl;
  else std::cout << "false" << std::endl;
  std::cout << std::endl;
  std::cout << "------------------------------------------------------------" << std::endl;
  std::cout << std::endl;

  // Preprocess, statistics, get the mean and standard deviation of every subsequence in the time series
  std::cout << "[>>] Preprocessing..." << std::endl;
  tstart = std::chrono::high_resolution_clock::now();

  tprogstart = tstart;
  preprocess();

  tend = std::chrono::high_resolution_clock::now();
  time_elapsed = tend - tstart;
  std::cout << "[OK] Preprocess Time:         " << std::setprecision(std::numeric_limits<double>::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl;

  //Initialize Matrix Profile and Matrix Profile Index
  std::cout << "[>>] Initializing Profile..." << std::endl;
  tstart = std::chrono::high_resolution_clock::now();

  profile          = new DTYPE[ProfileLength];
  profileIndex     = new int[ProfileLength];

  profile_tmp      = new DTYPE[ProfileLength * numThreads];
  profileIndex_tmp = new int[ProfileLength * numThreads];

  for (int i=0; i<ProfileLength*numThreads; i++) profile_tmp[i] = std::numeric_limits<DTYPE>::infinity();

  tend = std::chrono::high_resolution_clock::now();
  time_elapsed = tend - tstart;
  std::cout << "[OK] Initialize Profile Time: " << std::setprecision(std::numeric_limits<DTYPE>::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl;

  // Random shuffle the diagonals
  idx.clear();
  for (int i = exclusionZone+1; i < ProfileLength; i++)
    idx.push_back(i);

  if(!sequentialDiags)
    std::random_shuffle(idx.begin(), idx.end());

  /******************** SCRIMP ********************/
  std::cout << "[>>] Performing STREAMP..." << std::endl;
  tstart = std::chrono::high_resolution_clock::now();

  streamp();

  tend = std::chrono::high_resolution_clock::now();
  time_elapsed = tend - tstart;
  std::cout << "[OK] STREAMP Time:            " << std::setprecision(std::numeric_limits<DTYPE>::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl;

  // Save profile to file
  //std::cout << "[>>] Saving Profile..." << std::endl;
  //tstart = std::chrono::high_resolution_clock::now();

  //aveProfileToFile(outfilename.c_str(), profile, profileIndex, timeSeriesLength, windowSize);

  //tend = std::chrono::high_resolution_clock::now();
  //time_elapsed = tend - tstart;
 // std::cout << "[OK] Save Profile Time:       " << std::setprecision(std::numeric_limits<DTYPE>::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl;

  // Calculate total time
  time_elapsed = tend - tprogstart;
  std::cout << "[OK] Total Time:              " << std::setprecision(std::numeric_limits<DTYPE>::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl;
  std::cout << std::endl;

  delete profile;
  delete profileIndex;
}